Department of Mathematics, University of Siegen, Siegen, Germany.
Biom J. 2024 Jan;66(1):e2200095. doi: 10.1002/bimj.202200095. Epub 2023 Jan 15.
Statistical simulation studies are becoming increasingly popular to demonstrate the performance or superiority of new computational procedures and algorithms. Despite this status quo, previous surveys of the literature have shown that the reporting of statistical simulation studies often lacks relevant information and structure. The latter applies in particular to Bayesian simulation studies, and in this paper the Bayesian simulation study framework (BASIS) is presented as a step towards improving the situation. The BASIS framework provides a structured skeleton for planning, coding, executing, analyzing, and reporting Bayesian simulation studies in biometrical research and computational statistics. It encompasses various features of previous proposals and recommendations in the methodological literature and aims to promote neutral comparison studies in statistical research. Computational aspects covered in the BASIS include algorithmic choices, Markov-chain-Monte-Carlo convergence diagnostics, sensitivity analyses, and Monte Carlo standard error calculations for Bayesian simulation studies. Although the BASIS framework focuses primarily on methodological research, it also provides useful guidance for researchers who rely on the results of Bayesian simulation studies or analyses, as current state-of-the-art guidelines for Bayesian analyses are incorporated into the BASIS.
统计模拟研究越来越受欢迎,用于展示新的计算程序和算法的性能或优越性。尽管如此,之前的文献调查表明,统计模拟研究的报告往往缺乏相关信息和结构。这种情况尤其适用于贝叶斯模拟研究,在本文中,提出了贝叶斯模拟研究框架(BASIS),以改善这种情况。BASIS 框架为计划、编码、执行、分析和报告生物医学研究和计算统计学中的贝叶斯模拟研究提供了一个结构化的骨架。它包含了方法学文献中以前的建议和推荐的各种特征,并旨在促进统计研究中的中性比较研究。BASIS 涵盖的计算方面包括算法选择、马尔可夫链-蒙特卡罗收敛诊断、敏感性分析以及贝叶斯模拟研究的蒙特卡罗标准误差计算。尽管 BASIS 框架主要关注方法学研究,但它也为依赖贝叶斯模拟研究或分析结果的研究人员提供了有用的指导,因为当前的贝叶斯分析最先进指南已纳入 BASIS 中。