Suppr超能文献

具有不确定性的类哨兵 -2 合成高光谱图像的神经网络仿真

Neural Network Emulation of Synthetic Hyperspectral Sentinel-2-like Imagery with Uncertainty.

作者信息

Morata Miguel, Siegmann Bastian, Pérez-Suay Adrián, García-Soria José Luis, Rivera-Caicedo Juan Pablo, Verrelst Jochem

机构信息

Image Processing Laboratory (IPL). Universitat de València. C/ Catedrático Escardino, Paterna (València) Spain. Web: http://isp.uv.es.

Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.

出版信息

IEEE J Sel Top Appl Earth Obs Remote Sens. 2023;16:762-772. doi: 10.1109/jstars.2022.3231380.

Abstract

Hyperspectral satellite imagery provides highly-resolved spectral information for large areas and can provide vital information. However, only a few imaging spectrometer missions are currently in operation. Aiming to generate synthetic satellite-based hyperspectral imagery potentially covering any region, we explored the possibility of applying statistical learning, i.e. emulation. Based on the relationship of a Sentinel-2 (S2) scene and a hyperspectral HyPlant airborne image, this work demonstrates the possibility to emulate a hyperspectral S2-like image. We tested the role of different machine learning regression algorithms (MLRA) and varied the image-extracted training dataset size. We found superior performance of Neural Network (NN) as opposed to the other algorithms when trained with large datasets (up to 100'000 samples). The developed emulator was then applied to the L2A (bottom-of-atmosphere reflectance) S2 subset, and the obtained S2-like hyperspectral reflectance scene was evaluated. The validation of emulated against reference spectra demonstrated the potential of the technique. values between 0.75-0.9 and NRMSE between 2-5% across the full 402-2356 nm range were obtained. Moreover, epistemic uncertainty is obtained using the dropout technique, revealing spatial fidelity of the emulated scene. We obtained highest SD values of 0.05 (CV of 8%) in clouds and values below 0.01 (CV of 7%) in vegetation land covers. Finally, the emulator was applied to an entire S2 tile (5490x5490 pixels) to generate a hyperspectral reflectance datacube with the texture of S2 (60Gb, at a speed of 0.14sec/10000pixels). As the emulator can convert any S2 tile into a hyperspectral image, such scenes give perspectives how future satellite imaging spectroscopy will look like.

摘要

高光谱卫星图像可为大面积区域提供高分辨率光谱信息,并能提供至关重要的信息。然而,目前只有少数成像光谱仪任务正在运行。旨在生成可能覆盖任何区域的基于合成卫星的高光谱图像,我们探索了应用统计学习即仿真的可能性。基于哨兵 - 2(S2)场景与高光谱HyPlant航空图像之间的关系,这项工作证明了仿真类似S2的高光谱图像的可能性。我们测试了不同机器学习回归算法(MLRA)的作用,并改变了从图像中提取的训练数据集大小。我们发现,当使用大型数据集(多达100,000个样本)进行训练时,与其他算法相比,神经网络(NN)具有卓越的性能。然后将开发的模拟器应用于L2A(大气底层反射率)S2子集,并对获得的类似S2的高光谱反射率场景进行评估。针对参考光谱对仿真结果进行验证证明了该技术的潜力。在整个402 - 2356 nm范围内获得了0.75 - 0.9之间的相关系数值和2 - 5%之间的归一化均方根误差(NRMSE)。此外,使用随机失活技术获得了认知不确定性,揭示了仿真场景的空间保真度。我们在云层中获得了最高标准差(SD)值为0.05(变异系数为8%),在植被覆盖区域中获得的值低于0.01(变异系数为7%)。最后,将模拟器应用于整个S2图块(5490×5490像素),以生成具有S2纹理的高光谱反射率数据立方体(60Gb,速度为0.14秒/10000像素)。由于模拟器可以将任何S2图块转换为高光谱图像,这样的场景展示了未来卫星成像光谱的样子。

相似文献

10
Hybrid retrieval of crop traits from multi-temporal PRISMA hyperspectral imagery.从多时态PRISMA高光谱影像中混合检索作物性状
ISPRS J Photogramm Remote Sens. 2022 May;187:362-377. doi: 10.1016/j.isprsjprs.2022.03.014. Epub 2022 Apr 1.

本文引用的文献

1
Mapping landscape canopy nitrogen content from space using PRISMA data.利用PRISMA数据从太空绘制景观冠层氮含量图。
ISPRS J Photogramm Remote Sens. 2021 Aug;178:382-395. doi: 10.1016/j.isprsjprs.2021.06.017. Epub 2021 Jul 15.
8
A Comprehensive Analysis of Deep Regression.深度回归分析的全面分析。
IEEE Trans Pattern Anal Mach Intell. 2020 Sep;42(9):2065-2081. doi: 10.1109/TPAMI.2019.2910523. Epub 2019 Apr 11.
9
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验