Image X Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.
Med Phys. 2023 Apr;50(4):1962-1974. doi: 10.1002/mp.16224. Epub 2023 Jan 27.
MRI-guidance techniques that dynamically adapt radiation beams to follow tumor motion in real time will lead to more accurate cancer treatments and reduced collateral healthy tissue damage. The gold-standard for reconstruction of undersampled MR data is compressed sensing (CS) which is computationally slow and limits the rate that images can be available for real-time adaptation.
Once trained, neural networks can be used to accurately reconstruct raw MRI data with minimal latency. Here, we test the suitability of deep-learning-based image reconstruction for real-time tracking applications on MRI-Linacs.
We use automated transform by manifold approximation (AUTOMAP), a generalized framework that maps raw MR signal to the target image domain, to rapidly reconstruct images from undersampled radial k-space data. The AUTOMAP neural network was trained to reconstruct images from a golden-angle radial acquisition, a benchmark for motion-sensitive imaging, on lung cancer patient data and generic images from ImageNet. Model training was subsequently augmented with motion-encoded k-space data derived from videos in the YouTube-8M dataset to encourage motion robust reconstruction.
AUTOMAP models fine-tuned on retrospectively acquired lung cancer patient data reconstructed radial k-space with equivalent accuracy to CS but with much shorter processing times. Validation of motion-trained models with a virtual dynamic lung tumor phantom showed that the generalized motion properties learned from YouTube lead to improved target tracking accuracy.
AUTOMAP can achieve real-time, accurate reconstruction of radial data. These findings imply that neural-network-based reconstruction is potentially superior to alternative approaches for real-time image guidance applications.
能够实时跟随肿瘤运动动态调整射束的 MRI 引导技术将提高癌症治疗的准确性并减少对健康组织的附带损伤。用于重建欠采样磁共振数据的金标准是压缩感知(CS),但其计算速度较慢,限制了图像实时适应的速度。
一旦经过训练,神经网络就可以用于以最小的延迟精确重建原始 MRI 数据。在这里,我们测试了基于深度学习的图像重建在 MRI 直线加速器实时跟踪应用中的适用性。
我们使用自动流形逼近变换(AUTOMAP),这是一种将原始 MR 信号映射到目标图像域的通用框架,用于从欠采样的径向 k 空间数据中快速重建图像。AUTOMAP 神经网络经过训练,可从黄金角度径向采集重建图像,这是一种用于运动敏感成像的基准,使用肺癌患者数据和来自 ImageNet 的通用图像进行训练。随后,使用来自 YouTube-8M 数据集的视频衍生的运动编码 k 空间数据扩充模型训练,以鼓励运动稳健重建。
在回顾性获取的肺癌患者数据上进行微调的 AUTOMAP 模型以与 CS 相当的精度重建径向 k 空间,但处理时间要短得多。使用虚拟动态肺肿瘤体模对经过运动训练的模型进行验证表明,从 YouTube 中学到的广义运动特性可提高目标跟踪精度。
AUTOMAP 可以实现实时、准确的径向数据重建。这些发现表明,基于神经网络的重建可能优于替代方法,适用于实时图像引导应用。