Suppr超能文献

接触在长程蛋白质电导中的作用。

Role of contacts in long-range protein conductance.

机构信息

Biodesign Institute, Arizona State University, Tempe, AZ 85287.

School of Life Sciences, Arizona State University, Tempe, AZ 85287.

出版信息

Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):5886-5891. doi: 10.1073/pnas.1819674116. Epub 2019 Mar 7.

Abstract

Proteins are widely regarded as insulators, despite reports of electrical conductivity. Here we use measurements of single proteins between electrodes, in their natural aqueous environment to show that the factor controlling measured conductance is the nature of the electrical contact to the protein, and that specific ligands make highly selective electrical contacts. Using six proteins that lack known electrochemical activity, and measuring in a potential region where no ion current flows, we find characteristic peaks in the distributions of measured single-molecule conductances. These peaks depend on the contact chemistry, and hence, on the current path through the protein. In consequence, the measured conductance distribution is sensitive to changes in this path caused by ligand binding, as shown with streptavidin-biotin complexes. Measured conductances are on the order of nanosiemens over distances of many nanometers, orders of magnitude more than could be accounted for by electron tunneling. The current is dominated by contact resistance, so the conductance for a given path is independent of the distance between electrodes, as long as the contact points on the protein can span the gap between electrodes. While there is no currently known biological role for high electronic conductance, its dependence on specific contacts has important technological implications, because no current is observed at all without at least one strongly bonded contact, so direct electrical detection is a highly selective and label-free single-molecule detection method. We demonstrate single-molecule, highly specific, label- and background free-electronic detection of IgG antibodies to HIV and Ebola viruses.

摘要

蛋白质通常被认为是电绝缘体,尽管已有关于其导电性的报道。在这里,我们使用置于电极间的天然水溶液中单蛋白质的测量来表明,控制测量电导率的因素是与蛋白质的电接触性质,并且特定配体可形成高选择性的电接触。我们使用了六种缺乏已知电化学活性的蛋白质,并在没有离子电流流动的电势区域进行测量,从而在测量的单分子电导分布中发现了特征峰。这些峰取决于接触化学,因此取决于通过蛋白质的电流路径。因此,配体结合引起的电流路径变化会导致测量的电导分布发生变化,这一点通过链霉亲和素-生物素复合物得到了证明。测量的电导在纳米西门子量级,跨越许多纳米的距离,远远超过电子隧道效应所能解释的范围。电流主要由接触电阻决定,因此,对于给定的路径,电导与电极之间的距离无关,只要蛋白质上的接触点可以跨越电极之间的间隙。虽然目前还没有已知的生物作用需要高电子电导率,但它对特定接触的依赖性具有重要的技术意义,因为如果没有至少一个强键合的接触,则根本不会观察到电流,因此直接电检测是一种高度选择性和无标记的单分子检测方法。我们展示了针对 HIV 和埃博拉病毒的 IgG 抗体的单分子、高特异性、无标记和无背景的电子检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c41/6442609/cc84532833fe/pnas.1819674116fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验