Suppr超能文献

基于机器学习的放射组学方法预测结直肠癌微卫星不稳定性状态的系统评价。

Systematic review of machine learning-based radiomics approach for predicting microsatellite instability status in colorectal cancer.

机构信息

Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.

Department of Radiology, Karolinska University Hospital Huddinge, Room 601, Novum PI 6, Hiss F, Hälsovägen 7, 141 86, Huddinge, Stockholm, Sweden.

出版信息

Radiol Med. 2023 Feb;128(2):136-148. doi: 10.1007/s11547-023-01593-x. Epub 2023 Jan 17.

Abstract

This study aimed to systematically summarize the performance of the machine learning-based radiomics models in the prediction of microsatellite instability (MSI) in patients with colorectal cancer (CRC). It was conducted according to the preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA) guideline and was registered at the PROSPERO website with an identifier CRD42022295787. Systematic literature searching was conducted in databases of PubMed, Embase, Web of Science, and Cochrane Library up to November 10, 2022. Research which applied radiomics analysis on preoperative CT/MRI/PET-CT images for predicting the MSI status in CRC patients with no history of anti-tumor therapies was eligible. The radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) were applied to evaluate the research quality (full score 100%). Twelve studies with 4,320 patients were included. All studies were retrospective, and only four had an external validation cohort. The median incidence of MSI was 19% (range 8-34%). The area under the receiver operator curve of the models ranged from 0.78 to 0.96 (median 0.83) in the external validation cohort. The median sensitivity was 0.76 (range 0.32-1.00), and the median specificity was 0.87 (range 0.69-1.00). The median RQS score was 38% (range 14-50%), and half of the studies showed high risk in patient selection as evaluated by QUADAS-2. In conclusion, while radiomics based on pretreatment imaging modalities had a high performance in the prediction of MSI status in CRC, so far it does not appear to be ready for clinical use due to insufficient methodological quality.

摘要

本研究旨在系统总结基于机器学习的放射组学模型在预测结直肠癌(CRC)患者微卫星不稳定性(MSI)中的性能。研究按照系统评价和诊断准确性研究的首选报告项目(PRISMA-DTA)指南进行,并在 PROSPERO 网站上注册,标识符为 CRD42022295787。系统检索了 PubMed、Embase、Web of Science 和 Cochrane Library 数据库,检索时间截至 2022 年 11 月 10 日。符合条件的研究为应用术前 CT/MRI/PET-CT 图像进行放射组学分析以预测无抗肿瘤治疗史的 CRC 患者 MSI 状态的研究。应用放射组学质量评分(RQS)和诊断准确性研究的质量评估 2(QUADAS-2)对研究质量进行评估(满分 100%)。纳入了 12 项研究,共 4320 例患者。所有研究均为回顾性研究,只有 4 项研究有外部验证队列。MSI 的中位发生率为 19%(范围 8%-34%)。模型在外部验证队列中的受试者工作特征曲线下面积范围为 0.78-0.96(中位数 0.83)。中位敏感度为 0.76(范围 0.32-1.00),中位特异度为 0.87(范围 0.69-1.00)。中位 RQS 评分为 38%(范围 14%-50%),半数研究在患者选择方面被 QUADAS-2 评估为高风险。总之,基于预处理成像方式的放射组学在预测 CRC 患者 MSI 状态方面具有较高的性能,但由于方法学质量不足,目前似乎还不能用于临床。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79bf/9938810/953e1987fb49/11547_2023_1593_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验