Suppr超能文献

基于术前PET/CT的影像组学对结直肠癌微卫星不稳定性的定量预测

Quantitative Prediction of Microsatellite Instability in Colorectal Cancer With Preoperative PET/CT-Based Radiomics.

作者信息

Li Jiaru, Yang Ziyi, Xin Bowen, Hao Yichao, Wang Lisheng, Song Shaoli, Xu Junyan, Wang Xiuying

机构信息

School of Computer Science, The University of Sydney, Sydney, NSW, Australia.

Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.

出版信息

Front Oncol. 2021 Jul 22;11:702055. doi: 10.3389/fonc.2021.702055. eCollection 2021.

Abstract

OBJECTIVES

Microsatellite instability (MSI) status is an important hallmark for prognosis prediction and treatment recommendation of colorectal cancer (CRC). To address issues due to the invasiveness of clinical preoperative evaluation of microsatellite status, we investigated the value of preoperative F-FDG PET/CT radiomics with machine learning for predicting the microsatellite status of colorectal cancer patients.

METHODS

A total of 173 patients that underwent F-FDG PET/CT scans before operations were retrospectively analyzed in this study. The microsatellite status for each patient was identified as microsatellite instability-high (MSI-H) or microsatellite stable (MSS), according to the test for mismatch repair gene proteins with immunohistochemical staining methods. There were 2,492 radiomic features in total extracted from F-FDG PET/CT imaging. Then, radiomic features were selected through multivariate random forest selection and univariate relevancy tests after handling the imbalanced dataset through the random under-sampling method. Based on the selected features, we constructed a BalancedBagging model based on Adaboost classifiers to identify the MSI status in patients with CRC. The model performance was evaluated by the area under the curve (AUC), sensitivity, specificity, and accuracy on the validation dataset.

RESULTS

The ensemble model was constructed based on two radiomic features and achieved an 82.8% AUC for predicting the MSI status of colorectal cancer patients. The sensitivity, specificity, and accuracy were 83.3, 76.3, and 76.8%, respectively. The significant correlation of the selected two radiomic features with multiple effective clinical features was identified (p < 0.05).

CONCLUSION

F-FDG PET/CT radiomics analysis with the machine learning model provided a quantitative, efficient, and non-invasive mechanism for identifying the microsatellite status of colorectal cancer patients, which optimized the treatment decision support.

摘要

目的

微卫星不稳定性(MSI)状态是结直肠癌(CRC)预后预测和治疗推荐的重要标志。为解决临床术前评估微卫星状态的侵入性问题,我们研究了术前F-FDG PET/CT影像组学结合机器学习预测结直肠癌患者微卫星状态的价值。

方法

本研究回顾性分析了173例术前接受F-FDG PET/CT扫描的患者。根据免疫组织化学染色法检测错配修复基因蛋白,将每位患者的微卫星状态确定为微卫星高度不稳定(MSI-H)或微卫星稳定(MSS)。从F-FDG PET/CT影像中总共提取了2492个影像组学特征。然后,在通过随机欠采样方法处理不平衡数据集后,通过多变量随机森林选择和单变量相关性检验来选择影像组学特征。基于所选特征,我们构建了一个基于Adaboost分类器的平衡装袋模型,以识别CRC患者的MSI状态。通过验证数据集上的曲线下面积(AUC)、敏感性、特异性和准确性来评估模型性能。

结果

基于两个影像组学特征构建了集成模型,在预测结直肠癌患者的MSI状态方面AUC达到82.8%。敏感性、特异性和准确性分别为83.3%、76.3%和76.8%。确定了所选的两个影像组学特征与多个有效临床特征之间存在显著相关性(p<0.05)。

结论

F-FDG PET/CT影像组学分析结合机器学习模型为识别结直肠癌患者的微卫星状态提供了一种定量、高效且无创的机制,优化了治疗决策支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2995/8339969/5a3799bc4c49/fonc-11-702055-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验