Capello Ingold Gianluca, Martins da Fonseca João, Kolenda Zloić Sanda, Verdan Moreira Sarah, Kago Marole Karabo, Finnegan Emma, Yoshikawa Marcia Harumy, Daugėlaitė Silvija, Souza E Silva Tábata Xavit, Soato Ratti Marco Aurélio
Hospital Universitario Austral, Buenos Aires, Argentina.
Hospital Geral de Salvador, Salvador (BA), Brazil.
Abdom Radiol (NY). 2025 May 10. doi: 10.1007/s00261-025-04981-1.
Microsatellite instability (MSI) is a novel predictive biomarker for chemotherapy and immunotherapy response, as well as prognostic indicator in colorectal cancer (CRC). The current standard for MSI identification is polymerase chain reaction (PCR) testing or the immunohistochemical analysis of tumor biopsy samples. However, tumor heterogeneity and procedure complications pose challenges to these techniques. CT and MRI-based radiomics models offer a promising non-invasive approach for this purpose.
A systematic search of PubMed, Embase, Cochrane Library and Scopus was conducted to identify studies evaluating the diagnostic performance of CT and MRI-based radiomics models for detecting MSI status in CRC. Pooled area under the curve (AUC), sensitivity, and specificity were calculated in RStudio using a random-effects model. Forest plots and a summary ROC curve were generated. Heterogeneity was assessed using I² statistics and explored through sensitivity analyses, threshold effect assessment, subgroup analyses and meta-regression.
17 studies with a total of 6,045 subjects were included in the analysis. All studies extracted radiomic features from CT or MRI images of CRC patients with confirmed MSI status to train machine learning models. The pooled AUC was 0.815 (95% CI: 0.784-0.840) for CT-based studies and 0.900 (95% CI: 0.819-0.943) for MRI-based studies. Significant heterogeneity was identified and addressed through extensive analysis.
Radiomics models represent a novel and promising tool for predicting MSI status in CRC patients. These findings may serve as a foundation for future studies aimed at developing and validating improved models, ultimately enhancing the diagnosis, treatment, and prognosis of colorectal cancer.
微卫星不稳定性(MSI)是一种用于预测化疗和免疫治疗反应的新型生物标志物,也是结直肠癌(CRC)的预后指标。目前MSI识别的标准是聚合酶链反应(PCR)检测或肿瘤活检样本的免疫组织化学分析。然而,肿瘤异质性和操作并发症给这些技术带来了挑战。基于CT和MRI的放射组学模型为此提供了一种有前景的非侵入性方法。
对PubMed、Embase、Cochrane图书馆和Scopus进行系统检索,以确定评估基于CT和MRI的放射组学模型检测CRC中MSI状态的诊断性能的研究。使用随机效应模型在RStudio中计算合并曲线下面积(AUC)、敏感性和特异性。生成森林图和汇总ROC曲线。使用I²统计量评估异质性,并通过敏感性分析、阈值效应评估、亚组分析和Meta回归进行探索。
分析纳入了17项研究,共6045名受试者。所有研究均从MSI状态已确诊的CRC患者的CT或MRI图像中提取放射组学特征,以训练机器学习模型。基于CT的研究合并AUC为0.815(95%CI:0.784-0.840),基于MRI的研究合并AUC为0.900(95%CI:0.819-0.943)。通过广泛分析确定并解决了显著的异质性。
放射组学模型是预测CRC患者MSI状态的一种新型且有前景的工具。这些发现可为未来旨在开发和验证改进模型的研究奠定基础,最终改善结直肠癌的诊断、治疗和预后。