Department of Clinical Medicine, College of Medicine, Pingdingshan University, Pingdingshan, 467000, People's Republic of China.
Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Medical College, No. 167 Fangdong Street, Baqiao District, Xi'an, 710038, People's Republic of China.
BMC Pulm Med. 2023 Jan 18;23(1):23. doi: 10.1186/s12890-023-02314-w.
To develop a prediction model predicting in-hospital mortality of elder patients with community-acquired pneumonia (CAP) admitted to the intensive care unit (ICU).
In this cohort study, data of 619 patients with CAP aged ≥ 65 years were obtained from the Medical Information Mart for Intensive Care III (MIMIC III) 2001-2012 database. To establish the robustness of predictor variables, the sample dataset was randomly partitioned into a training set group and a testing set group (ratio: 6.5:3.5). The predictive factors were evaluated using multivariable logistic regression, and then a prediction model was constructed. The prediction model was compared with the widely used assessments: Sequential Organ Failure Assessment (SOFA), Pneumonia Severity Index (PSI), systolic blood pressure, oxygenation, age and respiratory rate (SOAR), CURB-65 scores using positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC), area under the curve (AUC) and 95% confidence interval (CI). The decision curve analysis (DCA) was used to assess the net benefit of the prediction model. Subgroup analysis based on the pathogen was developed.
Among 402 patients in the training set, 90 (24.63%) elderly CAP patients suffered from 30-day in-hospital mortality, with the median follow-up being 8 days. Hemoglobin/platelets ratio, age, respiratory rate, international normalized ratio, ventilation use, vasopressor use, red cell distribution width/blood urea nitrogen ratio, and Glasgow coma scales were identified as the predictive factors that affect the 30-day in-hospital mortality. The AUC values of the prediction model, the SOFA, SOAR, PSI and CURB-65 scores, were 0.751 (95% CI 0.749-0.752), 0.672 (95% CI 0.670-0.674), 0.607 (95% CI 0.605-0.609), 0.538 (95% CI 0.536-0.540), and 0.645 (95% CI 0.643-0.646), respectively. DCA result demonstrated that the prediction model could provide greater clinical net benefits to CAP patients admitted to the ICU. Concerning the pathogen, the prediction model also reported better predictive performance.
Our prediction model could predict the 30-day hospital mortality in elder patients with CAP and guide clinicians to identify the high-risk population.
开发一种预测模型,以预测入住重症监护病房(ICU)的老年社区获得性肺炎(CAP)患者的院内死亡率。
在这项队列研究中,从 2001-2012 年的医疗信息集市用于重症监护 III(MIMIC III)数据库中获取了 619 名年龄≥65 岁的 CAP 患者的数据。为了验证预测变量的稳健性,将样本数据集随机分为训练集组和测试集组(比例为 6.5:3.5)。使用多变量逻辑回归评估预测因素,然后构建预测模型。使用阳性预测值(PPV)、阴性预测值(NPV)、准确性(ACC)、曲线下面积(AUC)和 95%置信区间(CI)将预测模型与广泛使用的评估方法:序贯器官衰竭评估(SOFA)、肺炎严重指数(PSI)、收缩压、氧合、年龄和呼吸频率(SOAR)、CURB-65 评分进行比较。使用决策曲线分析(DCA)评估预测模型的净收益。根据病原体进行亚组分析。
在 402 名训练集中的患者中,有 90 名(24.63%)老年 CAP 患者在 30 天内发生院内死亡,中位随访时间为 8 天。血红蛋白/血小板比值、年龄、呼吸频率、国际标准化比值、通气使用、血管加压素使用、红细胞分布宽度/血尿素氮比值和格拉斯哥昏迷量表被确定为影响 30 天院内死亡率的预测因素。预测模型、SOFA、SOAR、PSI 和 CURB-65 评分的 AUC 值分别为 0.751(95%CI 0.749-0.752)、0.672(95%CI 0.670-0.674)、0.607(95%CI 0.605-0.609)、0.538(95%CI 0.536-0.540)和 0.645(95%CI 0.643-0.646)。DCA 结果表明,该预测模型可为入住 ICU 的 CAP 患者提供更大的临床净效益。关于病原体,该预测模型也报告了更好的预测性能。
我们的预测模型可以预测老年 CAP 患者 30 天的住院死亡率,并指导临床医生识别高危人群。