Suppr超能文献

关于非奇异核的分数阶猴痘病毒模型传播的新数值动力学。

New numerical dynamics of the fractional monkeypox virus model transmission pertaining to nonsingular kernels.

作者信息

Qurashi Maysaa Al, Rashid Saima, Alshehri Ahmed M, Jarad Fahd, Safdar Farhat

机构信息

Department of Mathematics, King Saud University, P. O. Box 22452, Riyadh 11495, Saudi Arabia.

Department of Mathematics, Saudi Electronic University, Riyadh, Saudi Arabia.

出版信息

Math Biosci Eng. 2023 Jan;20(1):402-436. doi: 10.3934/mbe.2023019. Epub 2022 Oct 9.

Abstract

Monkeypox (MPX) is a zoonotic illness that is analogous to smallpox. Monkeypox infections have moved across the forests of Central Africa, where they were first discovered, to other parts of the world. It is transmitted by the monkeypox virus, which is a member of the Poxviridae species and belongs to the Orthopoxvirus genus. In this article, the monkeypox virus is investigated using a deterministic mathematical framework within the Atangana-Baleanu fractional derivative that depends on the generalized Mittag-Leffler (GML) kernel. The system's equilibrium conditions are investigated and examined for robustness. The global stability of the endemic equilibrium is addressed using Jacobian matrix techniques and the Routh-Hurwitz threshold. Furthermore, we also identify a criterion wherein the system's disease-free equilibrium is globally asymptotically stable. Also, we employ a new approach by combining the two-step Lagrange polynomial and the fundamental concept of fractional calculus. The numerical simulations for multiple fractional orders reveal that as the fractional order reduces from 1, the virus's transmission declines. The analysis results show that the proposed strategy is successful at reducing the number of occurrences in multiple groups. It is evident that the findings suggest that isolating affected people from the general community can assist in limiting the transmission of pathogens.

摘要

猴痘(MPX)是一种类似于天花的人畜共患病。猴痘感染已从其最初被发现的中非森林传播到世界其他地区。它由猴痘病毒传播,该病毒是痘病毒科的成员,属于正痘病毒属。在本文中,使用依赖于广义米塔格 - 莱夫勒(GML)核的阿坦加纳 - 巴莱努分数阶导数内的确定性数学框架对猴痘病毒进行研究。研究了该系统的平衡条件并检查其稳健性。使用雅可比矩阵技术和劳斯 - 赫尔维茨阈值研究地方病平衡点的全局稳定性。此外,我们还确定了一个标准,其中系统的无病平衡点是全局渐近稳定的。而且,我们采用了一种将两步拉格朗日多项式与分数阶微积分的基本概念相结合的新方法。多个分数阶的数值模拟表明,随着分数阶从1减小,病毒传播下降。分析结果表明,所提出的策略成功地减少了多组中的发病数量。显然,研究结果表明将受影响的人与普通社区隔离开来有助于限制病原体的传播。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验