Suppr超能文献

基于贝叶斯层次模型的网络荟萃分析克服数据不成熟导致的生存外推挑战。

Bayesian hierarchical model-based network meta-analysis to overcome survival extrapolation challenges caused by data immaturity.

机构信息

Cytel RWAA, Weena 316, 3012 NJ, Rotterdam, The Netherlands.

Cytel RWAA, Canada.

出版信息

J Comp Eff Res. 2023 Mar;12(3):e220159. doi: 10.2217/cer-2022-0159. Epub 2023 Jan 18.

Abstract

This research evaluated standard Weibull mixture cure (WMC) network meta-analysis (NMA) with Bayesian hierarchical (BH) WMC NMA to inform long-term survival of therapies. Four trials in previously treated metastatic non-small-cell lung cancer with PD-L1 >1% were used comparing docetaxel with nivolumab, pembrolizumab and atezolizumab. Cure parameters related to a certain treatment class were assumed to share a common distribution. Standard WMC NMA predicted cure rates were 0.03 (0.01; 0.07), 0.18 (0.12; 0.24), 0.07 (0.02; 0.15) and 0.03 (0.00; 0.09) for docetaxel, nivolumab, pembrolizumab and atezolizumab, respectively, with corresponding incremental life years (LY) of 3.11 (1.65; 4.66), 1.06 (0.41; 2.37) and 0.42 (-0.57; 1.68). The Bayesian hierarchical-WMC-NMA rates were 0.06 (0.03; 0.10), 0.17 (0.11; 0.23), 0.12 (0.05; 0.20) and 0.12 (0.03; 0.23), respectively, with incremental LY of 2.35 (1.04; 3.93), 1.67 (0.68; 2.96) and 1.36 (-0.05; 3.64). BH-WMC-NMA impacts incremental mean LYs and cost-effectiveness ratios, potentially affecting reimbursement decisions.

摘要

这项研究评估了标准威布尔混合治愈(WMC)网络荟萃分析(NMA)与贝叶斯分层(BH)WMC NMA,以了解治疗的长期生存情况。四项在 PD-L1 >1%的先前治疗转移性非小细胞肺癌中进行的试验比较了多西他赛与纳武利尤单抗、帕博利珠单抗和阿替利珠单抗。假设与特定治疗类别相关的治愈参数共享一个共同的分布。标准 WMC NMA 预测的治愈率分别为 0.03(0.01;0.07)、0.18(0.12;0.24)、0.07(0.02;0.15)和 0.03(0.00;0.09),分别对应于多西他赛、纳武利尤单抗、帕博利珠单抗和阿替利珠单抗的增量生命年(LY)为 3.11(1.65;4.66)、1.06(0.41;2.37)和 0.42(-0.57;1.68)。贝叶斯分层-WMC-NMA 的比率分别为 0.06(0.03;0.10)、0.17(0.11;0.23)、0.12(0.05;0.20)和 0.12(0.03;0.23),增量 LY 分别为 2.35(1.04;3.93)、1.67(0.68;2.96)和 1.36(-0.05;3.64)。BH-WMC-NMA 影响增量平均 LY 和成本效益比,可能影响报销决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77c6/10288968/b4607761d9d9/cer-12-220159-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验