Centre for Imaging Sciences, Division of Informatics, Imaging & Data Sciences, The University of Manchester, Manchester, UK.
Rheumatology Directorate, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Salford, UK.
Rheumatology (Oxford). 2023 Jun 1;62(6):2325-2329. doi: 10.1093/rheumatology/kead026.
Nailfold capillaroscopy is key to timely diagnosis of SSc, but is often not used in rheumatology clinics because the images are difficult to interpret. We aimed to develop and validate a fully automated image analysis system to fill this gap.
We mimicked the image interpretation strategies of SSc experts, using deep learning networks to detect each capillary in the distal row of vessels and make morphological measurements. We combined measurements from multiple fingers to give a subject-level probability of SSc.We trained the system using high-resolution images from 111 subjects (group A) and tested on images from subjects not in the training set: 132 imaged at high-resolution (group B); 66 imaged with a low-cost digital microscope (group C). Roughly half of each group had confirmed SSc, and half were healthy controls or had primary RP ('normal'). We also estimated the performance of SSc experts.
We compared automated SSc probabilities with the known clinical status of patients (SSc versus 'normal'), generating receiver operating characteristic curves (ROCs). For group B, the area under the ROC (AUC) was 97% (94-99%) [median (90% CI)], with equal sensitivity/specificity 91% (86-95%). For group C, the AUC was 95% (88-99%), with equal sensitivity/specificity 89% (82-95%). SSc expert consensus achieved sensitivity 82% and specificity 73%.
Fully automated analysis using deep learning can achieve diagnostic performance at least as good as SSc experts, and is sufficiently robust to work with low-cost digital microscope images.
甲褶毛细血管镜检查对于及时诊断 SSc 至关重要,但由于图像难以解读,通常在风湿病诊所中未被使用。我们旨在开发和验证一种全自动图像分析系统来填补这一空白。
我们模仿 SSc 专家的图像解读策略,使用深度学习网络来检测远端血管行中的每根毛细血管并进行形态学测量。我们将来自多个手指的测量结果结合起来,给出了一个反映 SSc 可能性的个体水平概率。我们使用来自 111 名受试者的高分辨率图像(组 A)对系统进行训练,并在未参与训练集的受试者图像上进行测试:132 名受试者的高分辨率图像(组 B);66 名受试者的低成本数字显微镜图像(组 C)。每组约有一半受试者患有确诊的 SSc,另一半为健康对照者或原发性 RP(“正常”)。我们还评估了 SSc 专家的表现。
我们将自动化 SSc 概率与患者的已知临床状况(SSc 与“正常”)进行了比较,生成了受试者工作特征曲线(ROC)。对于组 B,ROC 的曲线下面积(AUC)为 97%(94-99%)[中位数(90%CI)],具有相等的敏感性/特异性 91%(86-95%)。对于组 C,AUC 为 95%(88-99%),具有相等的敏感性/特异性 89%(82-95%)。SSc 专家共识的敏感性为 82%,特异性为 73%。
使用深度学习的全自动分析可以达到至少与 SSc 专家相同的诊断性能,并且足够稳健,可以与低成本数字显微镜图像一起使用。