Centre for Imaging Sciences, Division of Informatics, Imaging & Data Sciences, The University of Manchester, Manchester, UK.
Division of Musculoskeletal & Dermatological Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
Microvasc Res. 2018 Jul;118:173-177. doi: 10.1016/j.mvr.2018.03.016. Epub 2018 Mar 29.
Despite increasing interest in nailfold capillaroscopy, objective measures of capillary structure and blood flow have been little studied. We aimed to test the hypothesis that structural measurements, capillary flow, and a combined measure have the predictive power to separate patients with systemic sclerosis (SSc) from those with primary Raynaud's phenomenon (PRP) and healthy controls (HC).
50 patients with SSc, 12 with PRP, and 50 HC were imaged using a novel capillaroscopy system that generates high-quality nailfold images and provides fully-automated measurements of capillary structure and blood flow (capillary density, mean width, maximum width, shape score, derangement and mean flow velocity). Population statistics summarise the differences between the three groups. Areas under ROC curves (A) were used to measure classification accuracy when assigning individuals to SSc and HC/PRP groups.
Statistically significant differences in group means were found between patients with SSc and both HC and patients with PRP, for all measurements, e.g. mean width (μm) ± SE: 15.0 ± 0.71, 12.7 ± 0.74 and 11.8 ± 0.23 for SSc, PRP and HC respectively. Combining the five structural measurements gave better classification (A = 0.919 ± 0.026) than the best single measurement (mean width, A = 0.874 ± 0.043), whilst adding flow further improved classification (A = 0.930 ± 0.024).
Structural and blood flow measurements are both able to distinguish patients with SSc from those with PRP/HC. Importantly, these hold promise as clinical trial outcome measures for treatments aimed at improving finger blood flow or microvascular remodelling.
尽管对手指毛细血管显微镜检查术的兴趣日益增加,但对毛细血管结构和血流的客观测量研究甚少。我们旨在验证以下假设,即结构测量、毛细血管血流以及综合测量具有预测能力,可以区分系统性硬化症(SSc)患者与原发性雷诺现象(PRP)患者和健康对照(HC)。
使用一种新的毛细血管镜系统对 50 名 SSc 患者、12 名 PRP 患者和 50 名 HC 进行成像,该系统生成高质量的指甲褶皱图像,并提供毛细血管结构和血流的全自动测量(毛细血管密度、平均宽度、最大宽度、形状评分、紊乱和平均血流速度)。总体统计数据总结了三组之间的差异。使用 ROC 曲线下面积(A)来衡量将个体分配到 SSc 和 HC/PRP 组时的分类准确性。
与 HC 和 PRP 患者相比,SSc 患者的所有测量值(例如平均宽度(μm)±SE:15.0±0.71、12.7±0.74 和 11.8±0.23)在组均值上均存在统计学显著差异。将五种结构测量值组合起来可获得更好的分类(A=0.919±0.026),优于最佳单项测量值(平均宽度,A=0.874±0.043),而添加血流则进一步提高了分类(A=0.930±0.024)。
结构和血流测量均能区分 SSc 患者与 PRP/HC 患者。重要的是,这些结果有望成为旨在改善手指血流或微血管重塑的治疗方法的临床试验结局指标。