Suppr超能文献

视觉转换器辅助风湿病学家筛查系统性硬化症的毛细血管变化:一种人工智能模型。

Vision transformer assisting rheumatologists in screening for capillaroscopy changes in systemic sclerosis: an artificial intelligence model.

机构信息

Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.

出版信息

Rheumatology (Oxford). 2023 Jul 5;62(7):2492-2500. doi: 10.1093/rheumatology/keac541.

Abstract

OBJECTIVES

The first objective of this study was to implement and assess the performance and reliability of a vision transformer (ViT)-based deep-learning model, an 'off-the-shelf' artificial intelligence solution, for identifying distinct signs of microangiopathy in nailfold capilloroscopy (NFC) images of patients with SSc. The second objective was to compare the ViT's analysis performance with that of practising rheumatologists.

METHODS

NFC images of patients prospectively enrolled in our European Scleroderma Trials and Research group (EUSTAR) and Very Early Diagnosis of Systemic Sclerosis (VEDOSS) local registries were used. The primary outcome investigated was the ViT's classification performance for identifying disease-associated changes (enlarged capillaries, giant capillaries, capillary loss, microhaemorrhages) and the presence of the scleroderma pattern in these images using a cross-fold validation setting. The secondary outcome involved a comparison of the ViT's performance vs that of rheumatologists on a reliability set, consisting of a subset of 464 NFC images with majority vote-derived ground-truth labels.

RESULTS

We analysed 17 126 NFC images derived from 234 EUSTAR and 55 VEDOSS patients. The ViT had good performance in identifying the various microangiopathic changes in capillaries by NFC [area under the curve (AUC) from 81.8% to 84.5%]. In the reliability set, the rheumatologists reached a higher average accuracy, as well as a better trade-off between sensitivity and specificity compared with the ViT. However, the annotators' performance was variable, and one out of four rheumatologists showed equal or lower classification measures compared with the ViT.

CONCLUSIONS

The ViT is a modern, well-performing and readily available tool for assessing patterns of microangiopathy on NFC images, and it may assist rheumatologists in generating consistent and high-quality NFC reports; however, the final diagnosis of a scleroderma pattern in any individual case needs the judgement of an experienced observer.

摘要

目的

本研究的首要目标是实施并评估基于视觉转换器(ViT)的深度学习模型的性能和可靠性,该模型是一种“现成的”人工智能解决方案,用于识别硬皮病患者甲襞毛细血管镜(NFC)图像中微血管病变的独特迹象。第二个目标是比较 ViT 的分析性能与执业风湿病学家的分析性能。

方法

使用前瞻性纳入我们的欧洲硬皮病试验和研究组(EUSTAR)和早期系统性硬皮病诊断(VEDOSS)本地登记处的患者的 NFC 图像。主要研究结果是 ViT 对识别与疾病相关的变化(毛细血管扩张、巨毛细血管、毛细血管丢失、微出血)和这些图像中硬皮病模式的分类性能,使用交叉折叠验证设置。次要结果涉及在由 464 张 NFC 图像组成的可靠性集中,使用多数票衍生的地面真实标签,比较 ViT 与风湿病学家的性能。

结果

我们分析了来自 234 名 EUSTAR 和 55 名 VEDOSS 患者的 17126 张 NFC 图像。ViT 在通过 NFC 识别毛细血管的各种微血管病变方面具有良好的性能[曲线下面积(AUC)为 81.8%至 84.5%]。在可靠性集中,与 ViT 相比,风湿病学家的平均准确率更高,敏感性和特异性之间的权衡更好。然而,注释者的表现各不相同,四分之一的风湿病学家的分类指标与 ViT 相同或更低。

结论

ViT 是一种用于评估 NFC 图像中微血管病变模式的现代、性能良好且易于使用的工具,它可以帮助风湿病学家生成一致且高质量的 NFC 报告;然而,在任何个别病例中,硬皮病模式的最终诊断仍需要经验丰富的观察者的判断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b76/10321092/de1aa9f11a88/keac541f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验