Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.
Institute for Molecular Systems Engineering, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
ACS Synth Biol. 2023 Feb 17;12(2):369-374. doi: 10.1021/acssynbio.2c00516. Epub 2023 Jan 18.
Spontaneous and induced front-rear polarization and a subsequent asymmetric actin cytoskeleton is a crucial event leading to cell migration, a key process involved in a variety of physiological and pathological conditions such as tissue development, wound healing, and cancer. Migration of adherent cells relies on the balance between adhesion to the underlying matrix and cytoskeleton-driven front protrusion and rear retraction. A current challenge is to uncouple the effect of adhesion and shape from the contribution of the cytoskeleton in regulating the onset of front-rear polarization. Here, we present a minimal model system that introduces an asymmetric actin cytoskeleton in synthetic cells, which are resembled by giant unilamellar lipid vesicles (GUVs) adhering onto symmetric and asymmetric micropatterned surfaces. Surface micropatterning of streptavidin-coated regions with varying adhesion shape and area was achieved by maskless UV photopatterning. To further study the effects of GUV shape on the cytoskeletal organization, actin filaments were polymerized together with bundling proteins inside the GUVs. The micropatterns induce synthetic cell deformation upon adhesion to the surface, with the cell shape adapting to the pattern shape and size. As expected, asymmetric patterns induce an asymmetric deformation in adherent synthetic cells. Actin filaments orient along the long axis of the deformed GUV, when having a length similar to the size of the major axis, whereas short filaments exhibit random orientation. With this bottom-up approach we have laid the first steps to identify the relationship between cell front-rear polarization and cytoskeleton organization in the future. Such a minimal system will allow us to further study the major components needed to create a polarized cytoskeleton at the onset of migration.
自发和诱导的前后极化以及随后的不对称肌动蛋白细胞骨架是导致细胞迁移的关键事件,细胞迁移是组织发育、伤口愈合和癌症等多种生理和病理过程中涉及的关键过程。贴壁细胞的迁移依赖于与基底基质的粘附和细胞骨架驱动的前缘突起和后缘缩回之间的平衡。目前的挑战是将粘附和形状的影响与细胞骨架在调节前后极化开始中的作用分离开来。在这里,我们提出了一个最小模型系统,该系统在粘附到对称和不对称微图案化表面的巨大单层脂质囊泡(GUV)中引入了不对称肌动蛋白细胞骨架。通过无掩模 UV 光图案化实现了带有不同粘附形状和面积的链霉亲和素涂层区域的表面微图案化。为了进一步研究 GUV 形状对细胞骨架组织的影响,肌动蛋白丝与 GUV 内的成束蛋白一起聚合。当微图案在粘附到表面时诱导合成细胞变形,细胞形状适应图案的形状和大小。不出所料,不对称图案会在附着的合成细胞中引起不对称变形。当肌动蛋白丝的长度与长轴的大小相似时,它们沿着变形的 GUV 的长轴定向,而短丝则表现出随机取向。通过这种自下而上的方法,我们已经迈出了识别细胞前后极化与细胞骨架组织之间关系的第一步。这样的最小系统将使我们能够进一步研究在迁移开始时创建极化细胞骨架所需的主要成分。