Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany.
Department of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany.
ACS Nano. 2022 May 24;16(5):7233-7241. doi: 10.1021/acsnano.1c10703. Epub 2022 Apr 4.
Cytoskeletal elements, like actin and myosin, have been reconstituted inside lipid vesicles toward the vision to reconstruct cells from the bottom up. Here, we realize the de novo assembly of entirely artificial DNA-based cytoskeletons with programmed multifunctionality inside synthetic cells. Giant unilamellar lipid vesicles (GUVs) serve as cell-like compartments, in which the DNA cytoskeletons are repeatedly and reversibly assembled and disassembled with light using the - isomerization of an azobenzene moiety positioned in the DNA tiles. Importantly, we induced ordered bundling of hundreds of DNA filaments into more rigid structures with molecular crowders. We quantify and tune the persistence length of the bundled filaments to achieve the formation of ring-like cortical structures inside GUVs, resembling actin rings that form during cell division. Additionally, we show that DNA filaments can be programmably linked to the compartment periphery using cholesterol-tagged DNA as a linker. The linker concentration determines the degree of the cortex-like network formation, and we demonstrate that the DNA cortex-like network can deform GUVs from within. All in all, this showcases the potential of DNA nanotechnology to mimic the diverse functions of a cytoskeleton in synthetic cells.
细胞骨架元件,如肌动蛋白和肌球蛋白,已在脂质体内部重新构建,以期从底部重建细胞。在这里,我们在合成细胞中实现了具有编程多功能性的完全人工基于 DNA 的细胞骨架的从头组装。巨大的单层脂质体 (GUV) 用作类似细胞的隔室,在该隔室中,使用定位在 DNA 瓦片中的偶氮苯部分的 - 异构化,通过光将 DNA 细胞骨架反复且可逆地组装和拆卸。重要的是,我们使用分子拥挤剂诱导数百根 DNA 丝有序地捆绑成更刚性的结构。我们定量并调整捆绑丝的持久长度,以在 GUV 内形成类似于有丝分裂过程中形成的肌动蛋白环的环形皮质结构。此外,我们表明可以使用胆固醇标记的 DNA 作为接头将 DNA 丝编程性地连接到隔室的外周。接头浓度决定了皮质样网络形成的程度,我们证明 DNA 皮质样网络可以从内部使 GUV 变形。总而言之,这展示了 DNA 纳米技术在模拟合成细胞中细胞骨架的多种功能方面的潜力。