Suppr超能文献

老年小鼠神经元内在兴奋性的集合特异性缺陷。

Ensemble-specific deficit in neuronal intrinsic excitability in aged mice.

机构信息

Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Psychological and Brain Sciences, Boston University, Boston, MA, USA.

出版信息

Neurobiol Aging. 2023 Mar;123:92-97. doi: 10.1016/j.neurobiolaging.2022.12.007. Epub 2022 Dec 22.

Abstract

With the prevalence of age-related cognitive deficits on the rise, it is essential to identify cellular and circuit alterations that contribute to age-related memory impairment. Increased intrinsic neuronal excitability after learning is important for memory consolidation, and changes to this process could underlie memory impairment in old age. Some studies find age-related deficits in hippocampal neuronal excitability that correlate with memory impairment but others do not, possibly due to selective changes only in activated neural ensembles. Thus, we tagged CA1 neurons activated during learning and recorded their intrinsic excitability 5 hours or 7 days post-training. Adult mice exhibited increased neuronal excitability 5 hours after learning, specifically in ensemble (learning-activated) CA1 neurons. As expected, ensemble excitability returned to baseline 7 days post-training. In aged mice, there was no ensemble-specific excitability increase after learning, which was associated with impaired hippocampal memory performance. These results suggest that CA1 may be susceptible to age-related impairments in post-learning ensemble excitability and underscore the need to selectively measure ensemble-specific changes in the brain.

摘要

随着与年龄相关的认知能力下降的普遍出现,确定导致与年龄相关的记忆障碍的细胞和回路改变至关重要。学习后内在神经元兴奋性的增加对于记忆巩固很重要,而这个过程的变化可能是老年记忆障碍的基础。一些研究发现海马体神经元兴奋性与记忆障碍相关的年龄相关性缺陷,但其他研究则没有,这可能是由于仅在激活的神经集合体中发生选择性变化。因此,我们在学习过程中标记 CA1 神经元,并在训练后 5 小时或 7 天记录其内在兴奋性。成年小鼠在学习后 5 小时表现出神经元兴奋性增加,特别是在集合体(学习激活)CA1 神经元中。正如预期的那样,集合体兴奋性在训练后 7 天恢复到基线。在老年小鼠中,学习后没有集合体特异性兴奋性增加,这与海马体记忆表现受损有关。这些结果表明 CA1 可能容易受到与年龄相关的学习后集合体兴奋性损伤的影响,并强调需要选择性地测量大脑中的集合体特异性变化。

相似文献

1
Ensemble-specific deficit in neuronal intrinsic excitability in aged mice.
Neurobiol Aging. 2023 Mar;123:92-97. doi: 10.1016/j.neurobiolaging.2022.12.007. Epub 2022 Dec 22.
2
Intrinsic excitability mechanisms of neuronal ensemble formation.
Elife. 2022 May 4;11:e77470. doi: 10.7554/eLife.77470.
3
Changes in Appetitive Associative Strength Modulates Nucleus Accumbens, But Not Orbitofrontal Cortex Neuronal Ensemble Excitability.
J Neurosci. 2017 Mar 22;37(12):3160-3170. doi: 10.1523/JNEUROSCI.3766-16.2017. Epub 2017 Feb 17.
4
Age-related biophysical alterations of hippocampal pyramidal neurons: implications for learning and memory.
Ageing Res Rev. 2002 Apr;1(2):181-207. doi: 10.1016/s1568-1637(01)00009-5.
6
Differential effects of alphaCaMKII mutation on hippocampal learning and changes in intrinsic neuronal excitability.
Eur J Neurosci. 2006 Apr;23(8):2235-40. doi: 10.1111/j.1460-9568.2006.04746.x.
7
Bidirectional Modulation of Intrinsic Excitability in Rat Prelimbic Cortex Neuronal Ensembles and Non-Ensembles after Operant Learning.
J Neurosci. 2017 Sep 6;37(36):8845-8856. doi: 10.1523/JNEUROSCI.3761-16.2017. Epub 2017 Aug 4.
9
Regulation of intrinsic excitability: Roles for learning and memory, aging and Alzheimer's disease, and genetic diversity.
Neurobiol Learn Mem. 2019 Oct;164:107069. doi: 10.1016/j.nlm.2019.107069. Epub 2019 Aug 20.
10
Alterations in CA1 pyramidal neuronal intrinsic excitability mediated by Ih channel currents in a rat model of amyloid beta pathology.
Neuroscience. 2015 Oct 1;305:279-92. doi: 10.1016/j.neuroscience.2015.07.087. Epub 2015 Aug 5.

引用本文的文献

1
Linking new information to a short-lasting memory trace induces consolidation in the hippocampus.
iScience. 2024 Nov 5;27(12):111320. doi: 10.1016/j.isci.2024.111320. eCollection 2024 Dec 20.
2
Memory engram stability and flexibility.
Neuropsychopharmacology. 2024 Nov;50(1):285-293. doi: 10.1038/s41386-024-01979-z. Epub 2024 Sep 18.
4
Synaptic and intrinsic plasticity within overlapping lateral amygdala ensembles following fear conditioning.
Front Cell Neurosci. 2023 Oct 9;17:1221176. doi: 10.3389/fncel.2023.1221176. eCollection 2023.
5
Chronotate: An open-source tool for manual timestamping and quantification of animal behavior.
Neurosci Lett. 2023 Sep 25;814:137461. doi: 10.1016/j.neulet.2023.137461. Epub 2023 Aug 23.

本文引用的文献

1
Fos ensembles encode and shape stable spatial maps in the hippocampus.
Nature. 2022 Sep;609(7926):327-334. doi: 10.1038/s41586-022-05113-1. Epub 2022 Aug 24.
2
Minian, an open-source miniscope analysis pipeline.
Elife. 2022 Jun 1;11:e70661. doi: 10.7554/eLife.70661.
3
Dynamic and heterogeneous neural ensembles contribute to a memory engram.
Curr Opin Neurobiol. 2021 Apr;67:199-206. doi: 10.1016/j.conb.2020.11.017. Epub 2020 Dec 31.
4
5
Chronic activation of fear engrams induces extinction-like behavior in ethanol-exposed mice.
Hippocampus. 2021 Jan;31(1):3-10. doi: 10.1002/hipo.23263. Epub 2020 Sep 18.
6
The role of intrinsic excitability in the evolution of memory: Significance in memory allocation, consolidation, and updating.
Neurobiol Learn Mem. 2020 Sep;173:107266. doi: 10.1016/j.nlm.2020.107266. Epub 2020 Jun 5.
7
Functionally Distinct Neuronal Ensembles within the Memory Engram.
Cell. 2020 Apr 16;181(2):410-423.e17. doi: 10.1016/j.cell.2020.02.055. Epub 2020 Mar 17.
8
Breakdown of spatial coding and interneuron synchronization in epileptic mice.
Nat Neurosci. 2020 Feb;23(2):229-238. doi: 10.1038/s41593-019-0559-0. Epub 2020 Jan 6.
9
Aging mice show impaired memory updating in the novel OUL updating paradigm.
Neuropsychopharmacology. 2020 Jan;45(2):337-346. doi: 10.1038/s41386-019-0438-0. Epub 2019 Jun 15.
10
Artificially Enhancing and Suppressing Hippocampus-Mediated Memories.
Curr Biol. 2019 Jun 3;29(11):1885-1894.e4. doi: 10.1016/j.cub.2019.04.065. Epub 2019 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验