Suppr超能文献

基于人工智能的临床方法在髂股深静脉血栓检测中的应用。

Artificial intelligence-based iliofemoral deep venous thrombosis detection using a clinical approach.

机构信息

Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.

Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea.

出版信息

Sci Rep. 2023 Jan 18;13(1):967. doi: 10.1038/s41598-022-25849-0.

Abstract

Early diagnosis of deep venous thrombosis is essential for reducing complications, such as recurrent pulmonary embolism and venous thromboembolism. There are numerous studies on enhancing efficiency of computer-aided diagnosis, but clinical diagnostic approaches have never been considered. In this study, we evaluated the performance of an artificial intelligence (AI) algorithm in the detection of iliofemoral deep venous thrombosis on computed tomography angiography of the lower extremities to investigate the effectiveness of using the clinical approach during the feature extraction process of the AI algorithm. To investigate the effectiveness of the proposed method, we created synthesized images to consider practical diagnostic procedures and applied them to the convolutional neural network-based RetinaNet model. We compared and analyzed the performances based on the model's backbone and data. The performance of the model was as follows: ResNet50: sensitivity = 0.843 (± 0.037), false positives per image = 0.608 (± 0.139); ResNet152 backbone: sensitivity = 0.839 (± 0.031), false positives per image = 0.503 (± 0.079). The results demonstrated the effectiveness of the suggested method in using computed tomography angiography of the lower extremities, and improving the reporting efficiency of the critical iliofemoral deep venous thrombosis cases.

摘要

早期诊断深静脉血栓形成对于减少并发症(如复发性肺栓塞和静脉血栓栓塞)至关重要。有许多关于提高计算机辅助诊断效率的研究,但从未考虑过临床诊断方法。在这项研究中,我们评估了人工智能(AI)算法在下肢计算机断层血管造影中检测髂股深静脉血栓形成的性能,以研究在 AI 算法的特征提取过程中使用临床方法的有效性。为了研究所提出方法的有效性,我们创建了合成图像以考虑实际诊断程序,并将其应用于基于卷积神经网络的 RetinaNet 模型。我们根据模型的骨干和数据对性能进行了比较和分析。模型的性能如下:ResNet50:灵敏度=0.843(±0.037),每张图像的假阳性率=0.608(±0.139);ResNet152 骨干:灵敏度=0.839(±0.031),每张图像的假阳性率=0.503(±0.079)。结果表明,所提出的方法在使用下肢计算机断层血管造影和提高关键髂股深静脉血栓形成病例的报告效率方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f5/9849339/715dec3027bb/41598_2022_25849_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验