Huang Shih-Cheng, Pareek Anuj, Seyyedi Saeed, Banerjee Imon, Lungren Matthew P
Department of Biomedical Data Science, Stanford University, Stanford, USA.
Center for Artificial Intelligence in Medicine & Imaging, Stanford University, Stanford, USA.
NPJ Digit Med. 2020 Oct 16;3:136. doi: 10.1038/s41746-020-00341-z. eCollection 2020.
Advancements in deep learning techniques carry the potential to make significant contributions to healthcare, particularly in fields that utilize medical imaging for diagnosis, prognosis, and treatment decisions. The current state-of-the-art deep learning models for radiology applications consider only pixel-value information without data informing clinical context. Yet in practice, pertinent and accurate non-imaging data based on the clinical history and laboratory data enable physicians to interpret imaging findings in the appropriate clinical context, leading to a higher diagnostic accuracy, informative clinical decision making, and improved patient outcomes. To achieve a similar goal using deep learning, medical imaging pixel-based models must also achieve the capability to process contextual data from electronic health records (EHR) in addition to pixel data. In this paper, we describe different data fusion techniques that can be applied to combine medical imaging with EHR, and systematically review medical data fusion literature published between 2012 and 2020. We conducted a systematic search on PubMed and Scopus for original research articles leveraging deep learning for fusion of multimodality data. In total, we screened 985 studies and extracted data from 17 papers. By means of this systematic review, we present current knowledge, summarize important results and provide implementation guidelines to serve as a reference for researchers interested in the application of multimodal fusion in medical imaging.
深度学习技术的进步有可能为医疗保健做出重大贡献,特别是在利用医学成像进行诊断、预后和治疗决策的领域。当前用于放射学应用的最先进深度学习模型仅考虑像素值信息,而没有结合临床背景的数据。然而在实际中,基于临床病史和实验室数据的相关且准确的非成像数据能够使医生在适当的临床背景下解读成像结果,从而提高诊断准确性、做出信息丰富的临床决策并改善患者预后。为了利用深度学习实现类似目标,基于医学成像像素的模型除了像素数据外,还必须具备处理来自电子健康记录(EHR)的上下文数据的能力。在本文中,我们描述了可用于将医学成像与EHR相结合的不同数据融合技术,并系统回顾了2012年至2020年间发表的医学数据融合文献。我们在PubMed和Scopus上进行了系统搜索,以查找利用深度学习进行多模态数据融合的原创研究文章。我们总共筛选了985项研究,并从17篇论文中提取了数据。通过这项系统综述,我们展示了当前的知识,总结了重要结果,并提供了实施指南,以为对多模态融合在医学成像中的应用感兴趣的研究人员提供参考。