Bai Haipeng, Cheng Tao, Li Shangyu, Zhou Zhenyu, Yang Hao, Li Jun, Xie Miao, Ye Jinyu, Ji Yujin, Li Youyong, Zhou Zhiyou, Sun Shigang, Zhang Bo, Peng Huisheng
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
Sci Bull (Beijing). 2021 Jan 15;66(1):62-68. doi: 10.1016/j.scib.2020.06.023. Epub 2020 Jun 16.
Among all CO electroreduction products, methane (CH) and ethylene (CH) are two typical and valuable hydrocarbon products which are formed in two different pathways: hydrogenation and dimerization reactions of the same CO intermediate. Theoretical studies show that the adsorption configurations of CO intermediate determine the reaction pathways towards CH/CH. However, it is challenging to experimentally control the CO adsorption configurations at the catalyst surface, and thus the hydrocarbon selectivity is still limited. Herein, we seek to synthesize two well-defined copper nanocatalysts with controllable surface structures. The two model catalysts exhibit a high hydrocarbon selectivity toward either CH (83%) or CH (93%) under identical reduction conditions. Scanning transmission electron microscopy and X-ray absorption spectroscopy characterizations reveal the low-coordination Cu sites and local Cu/Cu sites of the two catalysts, respectively. CO-temperature programed desorption, in-situ attenuated total reflection Fourier transform infrared spectroscopy and density functional theory studies unveil that the bridge-adsorbed CO (CO) on the low-coordination Cu sites is apt to be hydrogenated to CH, whereas the bridge-adsorbed CO plus linear-adsorbed CO (CO + CO) on the local Cu/Cu sites are apt to be coupled to CH. Our findings pave a new way to design catalysts with controllable CO adsorption configurations for high hydrocarbon product selectivity.
在所有CO电还原产物中,甲烷(CH₄)和乙烯(C₂H₄)是两种典型且有价值的烃类产物,它们通过两种不同途径形成:同一CO中间体的氢化反应和二聚反应。理论研究表明,CO中间体的吸附构型决定了生成CH₄/C₂H₄的反应途径。然而,在实验上控制催化剂表面的CO吸附构型具有挑战性,因此烃类选择性仍然有限。在此,我们试图合成两种具有可控表面结构的明确铜纳米催化剂。在相同的还原条件下,这两种模型催化剂对CH₄(83%)或C₂H₄(93%)表现出高烃类选择性。扫描透射电子显微镜和X射线吸收光谱表征分别揭示了两种催化剂的低配位Cu位点和局部Cu/Cu'位点。CO程序升温脱附、原位衰减全反射傅里叶变换红外光谱和密度泛函理论研究表明,低配位Cu位点上的桥式吸附CO(CO₋br)易于氢化为CH₄,而局部Cu/Cu'位点上的桥式吸附CO加上线性吸附CO(CO₋br + CO₋l)易于偶联生成C₂H₄。我们的研究结果为设计具有可控CO吸附构型以实现高烃类产物选择性的催化剂开辟了一条新途径。
Sci Bull (Beijing). 2021-1-15
ACS Appl Mater Interfaces. 2023-5-31
J Am Chem Soc. 2022-2-9
J Am Chem Soc. 2024-1-10
Nanomicro Lett. 2023-10-26
Nat Commun. 2024-4-29