文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于将CO电还原为乙烯和乙醇的关键中间体和Cu活性位点。

Key intermediates and Cu active sites for CO electroreduction to ethylene and ethanol.

作者信息

Zhan Chao, Dattila Federico, Rettenmaier Clara, Herzog Antonia, Herran Matias, Wagner Timon, Scholten Fabian, Bergmann Arno, López Núria, Roldan Cuenya Beatriz

机构信息

Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.

Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain.

出版信息

Nat Energy. 2024;9(12):1485-1496. doi: 10.1038/s41560-024-01633-4. Epub 2024 Sep 11.


DOI:10.1038/s41560-024-01633-4
PMID:39713047
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11659170/
Abstract

Electrochemical reduction of CO (CORR) to multi-carbon products is a promising technology to store intermittent renewable electricity into high-added-value chemicals and close the carbon cycle. Its industrial scalability requires electrocatalysts to be highly selective to certain products, such as ethylene or ethanol. However, a substantial knowledge gap prevents the design of tailor-made materials, as the properties ruling the catalyst selectivity remain elusive. Here we combined in situ surface-enhanced Raman spectroscopy and density functional theory on Cu electrocatalysts to unveil the reaction scheme for CORR to C products. Ethylene generation occurs when *OC-CO(H) dimers form via CO coupling on undercoordinated Cu sites. The ethanol route opens up only in the presence of highly compressed and distorted Cu domains with deep -band states via the crucial intermediate *OCHCH. By identifying and tracking the critical intermediates and specific active sites, our work provides guidelines to selectively decouple ethylene and ethanol production on rationally designed catalysts.

摘要

将CO电化学还原为多碳产物是一种很有前景的技术,可将间歇性可再生电力存储为高附加值化学品并闭合碳循环。其工业可扩展性要求电催化剂对某些产物具有高度选择性,例如乙烯或乙醇。然而,由于决定催化剂选择性的性质仍然难以捉摸,存在很大的知识空白,阻碍了定制材料的设计。在此,我们将原位表面增强拉曼光谱和密度泛函理论相结合,应用于铜电催化剂,以揭示CO电化学还原为含碳产物的反应机理。当OC-CO(H)二聚体通过低配位铜位点上的CO偶联形成时,会生成乙烯。乙醇生成途径仅在存在具有深带态的高度压缩和扭曲的铜域时通过关键中间体OCHCH开启。通过识别和追踪关键中间体及特定活性位点,我们的工作为在合理设计的催化剂上选择性地解耦乙烯和乙醇的生成提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/d4de23735c2e/41560_2024_1633_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/9894ef652134/41560_2024_1633_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/134866a88855/41560_2024_1633_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/71666842dd3a/41560_2024_1633_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/a6acf5166e75/41560_2024_1633_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/223cf16d464a/41560_2024_1633_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/3a23ebd808e9/41560_2024_1633_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/d4de23735c2e/41560_2024_1633_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/9894ef652134/41560_2024_1633_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/134866a88855/41560_2024_1633_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/71666842dd3a/41560_2024_1633_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/a6acf5166e75/41560_2024_1633_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/223cf16d464a/41560_2024_1633_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/3a23ebd808e9/41560_2024_1633_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/d4de23735c2e/41560_2024_1633_Fig7_HTML.jpg

相似文献

[1]
Key intermediates and Cu active sites for CO electroreduction to ethylene and ethanol.

Nat Energy. 2024

[2]
Understanding the role of Cu/Cu sites at CuO based catalysts in ethanol production from CO electroreduction -A DFT study.

RSC Adv. 2022-7-4

[3]
Grain-Boundary Engineering Boosted Undercoordinated Active Sites for Scalable Conversion of CO to Ethylene.

ACS Nano. 2024-7-9

[4]
Tailoring the Surface and Interface Structures of Copper-Based Catalysts for Electrochemical Reduction of CO to Ethylene and Ethanol.

Small. 2022-5

[5]
Cu(I) Reducibility Controls Ethylene vs Ethanol Selectivity on (100)-Textured Copper during Pulsed CO Reduction.

ACS Appl Mater Interfaces. 2021-3-31

[6]
N-doped CuO with the tunable Cu and Cu sites for selective CO electrochemical reduction to ethylene.

J Environ Sci (China). 2025-4

[7]
Enhancing CO Electroreduction Precision to Ethylene and Ethanol: The Role of Additional Boron Catalytic Sites in Cu-Based Tandem Catalysts.

Adv Sci (Weinh). 2024-12

[8]
Enriching the Local Concentration of CO Intermediates on Cu Cavities for the Electrocatalytic Reduction of CO to C Products.

ACS Appl Mater Interfaces. 2023-4-5

[9]
Bottom-up Growth of Convex Sphere with Adjustable Cu(0)/Cu(I) Interfaces for Effective C Production from CO Electroreduction.

Angew Chem Int Ed Engl. 2024-7-8

[10]
Manipulating C-C coupling pathway in electrochemical CO reduction for selective ethylene and ethanol production over single-atom alloy catalyst.

Nat Commun. 2024-11-26

引用本文的文献

[1]
Chemostructurally Stable Polyionomer Coatings Regulate Proton-Intermediate Landscape in Acidic CO Electrolysis.

J Am Chem Soc. 2025-8-6

[2]
Engineering catalyst-support interactions in cobalt phthalocyanine for enhanced electrocatalytic CO reduction: the role of graphene-skinned AlO.

Chem Sci. 2025-5-22

[3]
Accelerate Mass Transport of Proton and Carbon Sources by Super-Hygroscopic and Porous Nanosheets for Continuous CO-To-Ethylene Upgrade.

Adv Sci (Weinh). 2025-7

[4]
Small Interparticle Spacing in Catalyst Layers Forms an Expansive Triple-Phase Interface for Boosting the Current Density of CO-to-C Conversion.

Small. 2025-6

[5]
Decoding Double Layer Dynamics for Electroreduction over Cu.

Angew Chem Int Ed Engl. 2025-6-24

[6]
Progress in Cu-Based Catalyst Design for Sustained Electrocatalytic CO to C Conversion.

Adv Sci (Weinh). 2025-4

[7]
Raman spectroscopic studies of CO reduction reactions: from catalyst surface structures to reaction mechanisms.

Chem Sci. 2025-2-18

[8]
Transient pulsed discharge preparation of graphene aerogel supports asymmetric Cu cluster catalysts promote CO electroreduction.

Nat Commun. 2025-1-31

本文引用的文献

[1]
Competition of CO and Acetaldehyde Adsorption and Reduction on Copper Electrodes and Its Impact on -Propanol Formation.

ACS Catal. 2023-3-15

[2]
Operando studies reveal active Cu nanograins for CO electroreduction.

Nature. 2023-2

[3]
Controllable CO adsorption determines ethylene and methane productions from CO electroreduction.

Sci Bull (Beijing). 2021-1-15

[4]
Correlating CO Coverage and CO Electroreduction on Cu via High-Pressure Spectroscopic and Reactivity Investigations.

J Am Chem Soc. 2022-12-7

[5]
Mechanistic insight into electrocatalytic glyoxal reduction on copper and its relation to CO reduction.

Chem Sci. 2022-9-6

[6]
Intercepting Elusive Intermediates in Cu-Mediated CO Electrochemical Reduction with Alkyl Species.

J Am Chem Soc. 2022-11-9

[7]
Probing the Dynamics of Low-Overpotential CO-to-CO Activation on Copper Electrodes with Time-Resolved Raman Spectroscopy.

J Am Chem Soc. 2022-8-24

[8]
Over 70 % Faradaic Efficiency for CO Electroreduction to Ethanol Enabled by Potassium Dopant-Tuned Interaction between Copper Sites and Intermediates.

Angew Chem Int Ed Engl. 2022-9-5

[9]
Trends in oxygenate/hydrocarbon selectivity for electrochemical CO reduction to C products.

Nat Commun. 2022-3-17

[10]
Electrocatalytic reduction of CO and CO to multi-carbon compounds over Cu-based catalysts.

Chem Soc Rev. 2021-11-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索