Suppr超能文献

用于将CO电还原为乙烯和乙醇的关键中间体和Cu活性位点。

Key intermediates and Cu active sites for CO electroreduction to ethylene and ethanol.

作者信息

Zhan Chao, Dattila Federico, Rettenmaier Clara, Herzog Antonia, Herran Matias, Wagner Timon, Scholten Fabian, Bergmann Arno, López Núria, Roldan Cuenya Beatriz

机构信息

Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, Berlin, Germany.

Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Tarragona, Spain.

出版信息

Nat Energy. 2024;9(12):1485-1496. doi: 10.1038/s41560-024-01633-4. Epub 2024 Sep 11.

Abstract

Electrochemical reduction of CO (CORR) to multi-carbon products is a promising technology to store intermittent renewable electricity into high-added-value chemicals and close the carbon cycle. Its industrial scalability requires electrocatalysts to be highly selective to certain products, such as ethylene or ethanol. However, a substantial knowledge gap prevents the design of tailor-made materials, as the properties ruling the catalyst selectivity remain elusive. Here we combined in situ surface-enhanced Raman spectroscopy and density functional theory on Cu electrocatalysts to unveil the reaction scheme for CORR to C products. Ethylene generation occurs when *OC-CO(H) dimers form via CO coupling on undercoordinated Cu sites. The ethanol route opens up only in the presence of highly compressed and distorted Cu domains with deep -band states via the crucial intermediate *OCHCH. By identifying and tracking the critical intermediates and specific active sites, our work provides guidelines to selectively decouple ethylene and ethanol production on rationally designed catalysts.

摘要

将CO电化学还原为多碳产物是一种很有前景的技术,可将间歇性可再生电力存储为高附加值化学品并闭合碳循环。其工业可扩展性要求电催化剂对某些产物具有高度选择性,例如乙烯或乙醇。然而,由于决定催化剂选择性的性质仍然难以捉摸,存在很大的知识空白,阻碍了定制材料的设计。在此,我们将原位表面增强拉曼光谱和密度泛函理论相结合,应用于铜电催化剂,以揭示CO电化学还原为含碳产物的反应机理。当OC-CO(H)二聚体通过低配位铜位点上的CO偶联形成时,会生成乙烯。乙醇生成途径仅在存在具有深带态的高度压缩和扭曲的铜域时通过关键中间体OCHCH开启。通过识别和追踪关键中间体及特定活性位点,我们的工作为在合理设计的催化剂上选择性地解耦乙烯和乙醇的生成提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/741e/11659170/9894ef652134/41560_2024_1633_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验