Zhao Qian, Avdeev Maxim, Chen Liquan, Shi Siqi
Materials Genome Institute, Shanghai University, Shanghai 200444, China.
Australian Nuclear Science and Technology Organization, New Illawarra Rd, Lucas Heights, NSW 2234, Australia; School of Chemistry, The University of Sydney, Sydney 2006, Australia.
Sci Bull (Beijing). 2021 Jul 30;66(14):1401-1408. doi: 10.1016/j.scib.2021.04.029. Epub 2021 Apr 23.
Rational design of solid-state electrolytes (SSEs) with high ionic conductivity and low activation energy (E) is vital for all solid-state batteries. Machine learning (ML) techniques have recently been successful in predicting Li conduction property in SSEs with various descriptors and accelerating the development of SSEs. In this work, we extend the previous efforts and introduce a framework of ML prediction for E in SSEs with hierarchically encoding crystal structure-based (HECS) descriptors. Taking cubic Li-argyrodites as an example, an E prediction model is developed to the coefficient of determination (R) and root-mean-square error (RMSE) values of 0.887 and 0.02 eV for training dataset, and 0.820 and 0.02 eV for test dataset, respectively by partial least squares (PLS) analysis, proving the prediction power of HECS-descriptors. The variable importance in projection (VIP) scores demonstrate the combined effects of the global and local Li conduction environments, especially the anion size and the resultant structural changes associated with anion site disorder. The developed E prediction model directs us to optimize and design new Li-argyrodites with lower E, such as LiPSCl (<0.322 eV), LiPSBr (<0.273 eV), LiPSBrI (<0.352 eV), LiPNSI (<0.420 eV), LiAsNSI (<0.371 eV), LiAsNSeI (<0.450 eV), by broadening bottleneck size, invoking site disorder and activating concerted Li conduction. This analysis shows great potential in promoting rational design of advanced SSEs and the same approach can be applied to other types of materials.
设计具有高离子电导率和低活化能(E)的固态电解质(SSE)对于全固态电池至关重要。机器学习(ML)技术最近已成功地通过各种描述符预测SSE中的锂传导特性,并加速了SSE的开发。在这项工作中,我们扩展了之前的研究,并引入了一个基于分层编码晶体结构(HECS)描述符的SSE中E的ML预测框架。以立方锂银碘矿为例,通过偏最小二乘法(PLS)分析,开发了一个E预测模型,训练数据集的决定系数(R)和均方根误差(RMSE)值分别为0.887和0.02 eV,测试数据集的分别为0.820和0.02 eV,证明了HECS描述符的预测能力。投影变量重要性(VIP)分数展示了全局和局部锂传导环境的综合影响,特别是阴离子尺寸以及与阴离子位点无序相关的结构变化。所开发的E预测模型指导我们优化和设计具有更低E的新型锂银碘矿,例如通过扩大瓶颈尺寸、引入位点无序和激活协同锂传导来实现的LiPSCl(<0.322 eV)、LiPSBr(<0.273 eV)、LiPSBrI(<0.352 eV)、LiPNSI(<0.420 eV)、LiAsNSI(<0.371 eV)、LiAsNSeI(<0.450 eV)。该分析在促进先进SSE的合理设计方面显示出巨大潜力,并且相同的方法可应用于其他类型的材料。