Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois.
Centro Interdisciplinario de Neurociencias de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile.
Biophys J. 2023 Feb 21;122(4):661-671. doi: 10.1016/j.bpj.2023.01.015. Epub 2023 Jan 18.
Perturbing the temperature of a system modifies its energy landscape, thus providing a ubiquitous tool to understand biological processes. Here, we developed a framework to generate sudden temperature jumps (Tjumps) and sustained temperature steps (Tsteps) to study the temperature dependence of membrane proteins under voltage clamp while measuring the membrane temperature. Utilizing the melanin under the Xenopus laevis oocytes membrane as a photothermal transducer, we achieved short Tjumps up to 9°C in less than 1.5 ms and constant Tsteps for durations up to 150 ms. We followed the temperature at the membrane with sub-ms time resolution by measuring the time course of membrane capacitance, which is linearly related to temperature. We applied Tjumps in Kir1.1 isoform b, which reveals a highly temperature-sensitive blockage relief, and characterized the effects of Tsteps on the temperature-sensitive channels TRPM8 and TRPV1. These newly developed approaches provide a general tool to study membrane protein thermodynamics.
扰乱系统温度会改变其能量景观,从而为理解生物过程提供了一种无处不在的工具。在这里,我们开发了一种框架,用于产生突然的温度跳跃(Tjumps)和持续的温度阶跃(Tsteps),以便在测量膜温度的同时在电压钳下研究膜蛋白对温度的依赖性。我们利用非洲爪蟾卵母细胞膜下的黑色素作为光热换能器,实现了短至 9°C 的 Tjumps,持续时间不到 1.5 毫秒,以及长达 150 毫秒的恒定 Tsteps。我们通过测量与温度呈线性相关的膜电容的时间过程,以亚毫秒的时间分辨率来跟踪膜温度。我们将 Tjumps 应用于 Kir1.1 同工型 b,揭示了一种高度温度敏感的阻断缓解,并表征了 Tsteps 对温度敏感通道 TRPM8 和 TRPV1 的影响。这些新开发的方法为研究膜蛋白热力学提供了一种通用工具。