文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Optocapacitance: physical basis and its application.

作者信息

Pinto Bernardo I, Bassetto Carlos A Z, Bezanilla Francisco

机构信息

Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637 USA.

Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.

出版信息

Biophys Rev. 2022 Apr 13;14(2):569-577. doi: 10.1007/s12551-022-00943-9. eCollection 2022 Apr.


DOI:10.1007/s12551-022-00943-9
PMID:35528029
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9042976/
Abstract

The observation that membrane capacitance increases with temperature has led to the development of new methods of neuronal stimulation using light. The optocapacitive effect refers to a light-induced change in capacitance produced by the heating of the membrane through a photothermal effect. This change in capacitance manifests as a current, named optocapacitive current that depolarizes cells and therefore can be used to stimulate excitable tissues. Here, we discuss how optocapacitance arises from basic membrane properties, the characteristics of the optocapacitive current, its use for neuronal stimulation, and the challenges for its application in vivo.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a17/9043173/7f027412ab52/12551_2022_943_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a17/9043173/0ea0fa09977b/12551_2022_943_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a17/9043173/8ed8aeb978d0/12551_2022_943_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a17/9043173/7f027412ab52/12551_2022_943_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a17/9043173/0ea0fa09977b/12551_2022_943_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a17/9043173/8ed8aeb978d0/12551_2022_943_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a17/9043173/7f027412ab52/12551_2022_943_Fig3_HTML.jpg

相似文献

[1]
Optocapacitance: physical basis and its application.

Biophys Rev. 2022-4-13

[2]
Photolipid excitation triggers depolarizing optocapacitive currents and action potentials.

bioRxiv. 2023-8-14

[3]
Shedding Light on Thermally Induced Optocapacitance at the Organic Biointerface.

J Phys Chem B. 2021-9-30

[4]
Optocapacitive Generation of Action Potentials by Microsecond Laser Pulses of Nanojoule Energy.

Biophys J. 2017-12-19

[5]
Computational Modeling and Validation of Thermally Induced Electrical Capacitance Changes for Lipid Bilayer Membranes Irradiated by Pulsed Lasers.

J Phys Chem B. 2018-7-18

[6]
Response of a neuronal network computational model to infrared neural stimulation.

Front Comput Neurosci. 2022-8-15

[7]
Light-to-Heat Converting ECM-Mimetic Nanofiber Scaffolds for Neuronal Differentiation and Neurite Outgrowth Guidance.

Nanomaterials (Basel). 2022-6-23

[8]
Membrane potential manipulation with visible flash lamp illumination of targeted microbeads.

Biochem Biophys Res Commun. 2019-7-25

[9]
A dynamic clamp protocol to artificially modify cell capacitance.

Elife. 2022-4-1

[10]
Axonal model for temperature stimulation.

J Comput Neurosci. 2016-10

引用本文的文献

[1]
Non-genetic neuromodulation with graphene optoelectronic actuators for disease models, stem cell maturation, and biohybrid robotics.

Nat Commun. 2025-8-20

[2]
Interfacing with the Brain: How Nanotechnology Can Contribute.

ACS Nano. 2025-3-25

[3]
Membrane-targeted push-pull azobenzenes for the optical modulation of membrane potential.

Light Sci Appl. 2025-1-1

[4]
Neural modulation with photothermally active nanomaterials.

Nat Rev Bioeng. 2023-3

[5]
A silicon diode-based optoelectronic interface for bidirectional neural modulation.

Proc Natl Acad Sci U S A. 2024-7-23

[6]
High-Precision Photoacoustic Neural Modulation Uses a Non-Thermal Mechanism.

Adv Sci (Weinh). 2024-8

[7]
Photoacoustic: A Versatile Nongenetic Method for High-Precision Neuromodulation.

Acc Chem Res. 2024-6-4

[8]
Toward a brighter constellation: multiorgan neuroimaging of neural and vascular dynamics in the spinal cord and brain.

Neurophotonics. 2024-4

[9]
Photolipid excitation triggers depolarizing optocapacitive currents and action potentials.

Nat Commun. 2024-2-7

[10]
Towards a Brighter Constellation: Multi-Organ Neuroimaging of Neural and Vascular Dynamics in the Spinal Cord and Brain.

bioRxiv. 2023-12-27

本文引用的文献

[1]
Nanoparticles for Targeted Brain Drug Delivery: What Do We Know?

Int J Mol Sci. 2021-10-28

[2]
Shedding Light on Thermally Induced Optocapacitance at the Organic Biointerface.

J Phys Chem B. 2021-9-30

[3]
TiCT MXene Flakes for Optical Control of Neuronal Electrical Activity.

ACS Nano. 2021-9-28

[4]
Structural and functional consequences of reversible lipid asymmetry in living membranes.

Nat Chem Biol. 2020-12

[5]
Challenges for Therapeutic Applications of Opsin-Based Optogenetic Tools in Humans.

Front Neural Circuits. 2020

[6]
Remote nongenetic optical modulation of neuronal activity using fuzzy graphene.

Proc Natl Acad Sci U S A. 2020-6-1

[7]
Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages.

Soft Matter. 2021-1-22

[8]
Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models.

Nat Commun. 2019-12-17

[9]
Thermal constraints on in vivo optogenetic manipulations.

Nat Neurosci. 2019-6-17

[10]
Rational design of silicon structures for optically controlled multiscale biointerfaces.

Nat Biomed Eng. 2018-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索