Suppr超能文献

基于藻酸盐和丝素蛋白双交联网络的可灌注分级微通道的三维生物打印

Three-Dimensional Bioprinting of Perfusable Hierarchical Microchannels with Alginate and Silk Fibroin Double Cross-linked Network.

作者信息

Li Huan, Li Ningning, Zhang He, Zhang Yifan, Suo Hairui, Wang Ling, Xu Mingen

机构信息

Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China.

School of Automation, Hangzhou Dianzi University, Hangzhou, China.

出版信息

3D Print Addit Manuf. 2020 Apr 1;7(2):78-84. doi: 10.1089/3dp.2019.0115. Epub 2020 Apr 16.

Abstract

Vascularization is essential for the regeneration of three-dimensional (3D) bioprinting organs. As a general method to produce microfluidic channels in 3D printing constructs, coaxial extrusion has attracted great attention. However, the biocompatible bioinks are very limited for coaxial extrusion to fabricate microchannels with regular structure and enough mechanical properties. Herein, a hybrid bioink composed of alginate (Alg) and silk fibroin (SF) was proposed for 3D bioprinting of microchannel networks based on coaxial extrusion. The rheological properties of the bioink demonstrated that the hybrid Alg/SF bioink exhibited improved viscosity and shear thinning behavior compared with either pure Alg or SF bioink and had similar storage and loss modulus in a wide range of shear frequency, indicating a sound printability. Using a coaxial extrusion system with calcium ions and Pluronic F127 flowing through the core nozzle as cross-linkers, the Alg/SF bioink could be extruded and deposited to form a 3D scaffold with interconnected microchannels. The regular structure and smooth pore wall of microchannels inside the scaffold were demonstrated by optical coherence tomography. Micropores left by the rinse of F127 were observed by scanning electron microscope, constituting a hierarchical structure together with the microchannels and printed macropores. Fourier transform infrared spectroscopy analysis proved the complete rinse of F127 and the formation of β-sheet SF structure. Thus, Alg/SF could form a double cross-linked network, which was much stronger than the pure Alg network. Moreover, cells in the Alg/SF scaffold showed higher viability and proliferation rate than in the Alg scaffold. Therefore, Alg/SF is a promising bioink for coaxial extrusion-based 3D bioprinting, with the printed microchannel network beneficial for complex tissue and organ regeneration.

摘要

血管化对于三维(3D)生物打印器官的再生至关重要。作为在3D打印构建体中制造微流体通道的常用方法,同轴挤出备受关注。然而,用于同轴挤出以制造具有规则结构和足够机械性能的微通道的生物相容性生物墨水非常有限。在此,提出了一种由藻酸盐(Alg)和丝素蛋白(SF)组成的混合生物墨水,用于基于同轴挤出的微通道网络的3D生物打印。生物墨水的流变学特性表明,与纯Alg或SF生物墨水相比,混合Alg/SF生物墨水表现出改善的粘度和剪切变稀行为,并且在很宽的剪切频率范围内具有相似的储能模量和损耗模量,表明具有良好的可打印性。使用钙离子和普朗尼克F127作为交联剂通过芯喷嘴流动的同轴挤出系统,可以挤出并沉积Alg/SF生物墨水以形成具有相互连接的微通道的3D支架。通过光学相干断层扫描证明了支架内部微通道具有规则的结构和光滑的孔壁。通过扫描电子显微镜观察到F127冲洗后留下的微孔,它们与微通道和打印的大孔一起构成了分级结构。傅里叶变换红外光谱分析证明了F127的完全冲洗以及β-折叠SF结构的形成。因此,Alg/SF可以形成比纯Alg网络更强得多的双交联网络。此外,Alg/SF支架中的细胞比Alg支架中的细胞表现出更高的活力和增殖率。因此,Alg/SF是一种用于基于同轴挤出的3D生物打印的有前途的生物墨水,打印的微通道网络有利于复杂组织和器官的再生。

相似文献

1
Three-Dimensional Bioprinting of Perfusable Hierarchical Microchannels with Alginate and Silk Fibroin Double Cross-linked Network.
3D Print Addit Manuf. 2020 Apr 1;7(2):78-84. doi: 10.1089/3dp.2019.0115. Epub 2020 Apr 16.
2
Silk Fibroin Enhances Cytocompatibilty and Dimensional Stability of Alginate Hydrogels for Light-Based Three-Dimensional Bioprinting.
Biomacromolecules. 2021 May 10;22(5):1921-1931. doi: 10.1021/acs.biomac.1c00034. Epub 2021 Apr 11.
3
Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
Tissue Eng Part A. 2021 Sep;27(17-18):1168-1181. doi: 10.1089/ten.TEA.2020.0305. Epub 2021 Feb 26.
5
Directly coaxial bioprinting of 3D vascularized tissue using novel bioink based on decellularized human amniotic membrane.
Int J Biol Macromol. 2023 Dec 31;253(Pt 4):127041. doi: 10.1016/j.ijbiomac.2023.127041. Epub 2023 Sep 22.
6
Bioprinting of alginate-carboxymethyl chitosan scaffolds for enamel tissue engineering.
Biofabrication. 2022 Dec 30;15(1). doi: 10.1088/1758-5090/acab35.
7
Photo-/thermo-responsive bioink for improved printability in extrusion-based bioprinting.
Mater Today Bio. 2024 Jan 26;25:100973. doi: 10.1016/j.mtbio.2024.100973. eCollection 2024 Apr.
8
Development of Silk Fibroin-Based Non-Crosslinking Thermosensitive Bioinks for 3D Bioprinting.
Polymers (Basel). 2023 Aug 28;15(17):3567. doi: 10.3390/polym15173567.
10
Formulation and Characterization of a Novel Oxidized Alginate-Gelatin-Silk Fibroin Bioink with the Aim of Skin Regeneration.
Iran Biomed J. 2023 Sep 1;27(5):280-93. doi: 10.61186/ibj.27.5.280. Epub 2023 Aug 23.

引用本文的文献

2
3D Bioprinting of Graphene Oxide-Incorporated Hydrogels for Neural Tissue Regeneration.
3D Print Addit Manuf. 2024 Dec 16;11(6):e2022-e2032. doi: 10.1089/3dp.2023.0150. eCollection 2024 Dec.
3
Leveraging printability and biocompatibility in materials for printing implantable vessel scaffolds.
Mater Today Bio. 2024 Nov 23;29:101366. doi: 10.1016/j.mtbio.2024.101366. eCollection 2024 Dec.
5
A Novel Cryogenic Approach to 3D Printing Cytocompatible, Conductive, Hydrogel-Based Inks.
3D Print Addit Manuf. 2024 Apr 1;11(2):447-459. doi: 10.1089/3dp.2022.0169. Epub 2024 Apr 16.
6
Three-Dimensional Bioprinting in Soft Tissue Engineering for Plastic and Reconstructive Surgery.
Bioengineering (Basel). 2023 Oct 21;10(10):1232. doi: 10.3390/bioengineering10101232.
7
Formulation and Characterization of a Novel Oxidized Alginate-Gelatin-Silk Fibroin Bioink with the Aim of Skin Regeneration.
Iran Biomed J. 2023 Sep 1;27(5):280-93. doi: 10.61186/ibj.27.5.280. Epub 2023 Aug 23.
10
Pectin-based bioinks for 3D models of neural tissue produced by a pH-controlled kinetics.
Front Bioeng Biotechnol. 2022 Dec 22;10:1032542. doi: 10.3389/fbioe.2022.1032542. eCollection 2022.

本文引用的文献

1
Development of a Coaxial 3D Printing Platform for Biofabrication of Implantable Islet-Containing Constructs.
Adv Healthc Mater. 2019 Apr;8(7):e1801181. doi: 10.1002/adhm.201801181. Epub 2019 Jan 11.
2
Coaxial extrusion bioprinted shell-core hydrogel microfibers mimic glioma microenvironment and enhance the drug resistance of cancer cells.
Colloids Surf B Biointerfaces. 2018 Nov 1;171:291-299. doi: 10.1016/j.colsurfb.2018.07.042. Epub 2018 Jul 19.
4
3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
ACS Appl Mater Interfaces. 2018 Feb 28;10(8):6849-6857. doi: 10.1021/acsami.7b16059. Epub 2018 Feb 15.
5
Silk-Based Bioinks for 3D Bioprinting.
Adv Healthc Mater. 2018 Apr;7(8):e1701204. doi: 10.1002/adhm.201701204. Epub 2018 Jan 23.
6
A decade of progress in liver regenerative medicine.
Biomaterials. 2018 Mar;157:161-176. doi: 10.1016/j.biomaterials.2017.11.027. Epub 2017 Nov 24.
8
Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.
Biomaterials. 2016 Nov;106:58-68. doi: 10.1016/j.biomaterials.2016.07.038. Epub 2016 Aug 2.
9
Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography.
Biomed Opt Express. 2016 Feb 19;7(3):894-910. doi: 10.1364/BOE.7.000894. eCollection 2016 Mar 1.
10
3D Bioprinting for Vascularized Tissue Fabrication.
Ann Biomed Eng. 2017 Jan;45(1):132-147. doi: 10.1007/s10439-016-1653-z. Epub 2016 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验