Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia.
Bioscience Discipline Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia.
Cell Mol Life Sci. 2023 Jan 19;80(2):46. doi: 10.1007/s00018-023-04694-y.
Nanoceria or cerium oxide nanoparticles characterised by the co-existing of Ce and Ce that allows self-regenerative, redox-responsive dual-catalytic activities, have attracted interest as an innovative approach to treating cancer. Depending on surface characteristics and immediate environment, nanoceria exerts either anti- or pro-oxidative effects which regulate reactive oxygen species (ROS) levels in biological systems. Nanoceria mimics ROS-related enzymes that protect normal cells at physiological pH from oxidative stress and induce ROS production in the slightly acidic tumour microenvironment to trigger cancer cell death. Nanoceria as nanozymes also generates molecular oxygen that relieves tumour hypoxia, leading to tumour cell sensitisation to improve therapeutic outcomes of photodynamic (PDT), photothermal (PTT) and radiation (RT), targeted and chemotherapies. Nanoceria has been engineered as a nanocarrier to improve drug delivery or in combination with other drugs to produce synergistic anti-cancer effects. Despite reported preclinical successes, there are still knowledge gaps arising from the inadequate number of studies reporting findings based on physiologically relevant disease models that accurately represent the complexities of cancer. This review discusses the dual-catalytic activities of nanoceria responding to pH and oxygen tension gradient in tumour microenvironment, highlights the recent nanoceria-based platforms reported to be feasible direct and indirect anti-cancer agents with protective effects on healthy tissues, and finally addresses the challenges in clinical translation of nanoceria based therapeutics.
具有 Ce 和 Ce 共存特征的纳米氧化铈或氧化铈纳米颗粒,具有自再生、氧化还原响应的双催化活性,作为治疗癌症的创新方法引起了人们的兴趣。根据表面特性和即时环境,纳米氧化铈表现出抗氧化或促氧化作用,调节生物系统中的活性氧(ROS)水平。纳米氧化铈模拟与 ROS 相关的酶,在生理 pH 值下保护正常细胞免受氧化应激,并在微酸性肿瘤微环境中诱导 ROS 产生,以触发癌细胞死亡。纳米氧化铈作为纳米酶还会产生分子氧,缓解肿瘤缺氧,导致肿瘤细胞对光动力疗法(PDT)、光热疗法(PTT)和放射疗法(RT)、靶向和化学疗法的敏感性提高,以改善治疗效果。纳米氧化铈已被设计为纳米载体,以提高药物递送效率,或与其他药物联合使用,以产生协同的抗癌作用。尽管有报道的临床前成功,但由于缺乏基于生理相关疾病模型的研究报告,这些研究报告准确地反映了癌症的复杂性,因此仍存在知识空白。本综述讨论了纳米氧化铈在肿瘤微环境中对 pH 和氧张力梯度的双催化活性,强调了最近报道的基于纳米氧化铈的平台作为可行的直接和间接抗癌药物,对健康组织具有保护作用,最后讨论了基于纳米氧化铈的治疗方法在临床转化中的挑战。
Cell Mol Life Sci. 2023-1-19
J Nanobiotechnology. 2019-7-10
Int J Nanomedicine. 2013-11-21
Environ Toxicol. 2011-5-26
Int J Nanomedicine. 2018-3-15
J Huazhong Univ Sci Technolog Med Sci. 2016-8
J Cell Physiol. 2018-9-6
Chem Biol Interact. 2018-6-4
Int J Nanomedicine. 2025-5-29
Cancer Metastasis Rev. 2025-5-10
Mater Today Bio. 2024-12-5
J Funct Biomater. 2024-12-15
Nanomaterials (Basel). 2022-12-9
ACS Appl Mater Interfaces. 2022-5-18
RSC Adv. 2022-1-10
ACS Appl Bio Mater. 2020-1-21
ACS Biomater Sci Eng. 2022-2-14