Suppr超能文献

控制人类类器官的对称性破缺揭示了信号梯度驱动分段时钟波。

Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves.

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Cell. 2023 Feb 2;186(3):513-527.e19. doi: 10.1016/j.cell.2022.12.042. Epub 2023 Jan 18.

Abstract

Axial development of mammals involves coordinated morphogenetic events, including axial elongation, somitogenesis, and neural tube formation. To gain insight into the signals controlling the dynamics of human axial morphogenesis, we generated axially elongating organoids by inducing anteroposterior symmetry breaking of spatially coupled epithelial cysts derived from human pluripotent stem cells. Each organoid was composed of a neural tube flanked by presomitic mesoderm sequentially segmented into somites. Periodic activation of the somite differentiation gene MESP2 coincided in space and time with anteriorly traveling segmentation clock waves in the presomitic mesoderm of the organoids, recapitulating critical aspects of somitogenesis. Timed perturbations demonstrated that FGF and WNT signaling play distinct roles in axial elongation and somitogenesis, and that FGF signaling gradients drive segmentation clock waves. By generating and perturbing organoids that robustly recapitulate the architecture of multiple axial tissues in human embryos, this work offers a means to dissect mechanisms underlying human embryogenesis.

摘要

哺乳动物的轴向发育涉及协调的形态发生事件,包括轴向伸长、体节发生和神经管形成。为了深入了解控制人类轴向形态发生动力学的信号,我们通过诱导源自人类多能干细胞的空间耦合上皮囊肿的前后对称性破坏,生成了轴向伸长的类器官。每个类器官由神经管和依次分段为体节的生骨节间充质组成。体节分化基因 MESP2 的周期性激活在空间和时间上与类器官中生骨节间充质中向前传播的分段时钟波一致,再现了体节发生的关键方面。定时干扰表明,FGF 和 WNT 信号在轴向伸长和体节发生中发挥不同的作用,并且 FGF 信号梯度驱动分段时钟波。通过生成和干扰类器官,这些类器官能够强有力地再现人类胚胎中多个轴向组织的结构,这项工作提供了一种剖析人类胚胎发生机制的方法。

相似文献

1
Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves.
Cell. 2023 Feb 2;186(3):513-527.e19. doi: 10.1016/j.cell.2022.12.042. Epub 2023 Jan 18.
2
Paraxial mesoderm organoids model development of human somites.
Elife. 2022 Jan 28;11:e68925. doi: 10.7554/eLife.68925.
3
Modeling Human Paraxial Mesoderm Development with Pluripotent Stem Cells.
Methods Mol Biol. 2024;2767:115-122. doi: 10.1007/7651_2023_507.
4
Cellular and molecular control of vertebrate somitogenesis.
Nat Rev Mol Cell Biol. 2024 Jul;25(7):517-533. doi: 10.1038/s41580-024-00709-z. Epub 2024 Feb 28.
5
Recapitulating the human segmentation clock with pluripotent stem cells.
Nature. 2020 Apr;580(7801):124-129. doi: 10.1038/s41586-020-2144-9. Epub 2020 Apr 1.
6
Somitogenesis.
Curr Top Dev Biol. 1998;38:225-87.
7
Periodic formation of epithelial somites from human pluripotent stem cells.
Nat Commun. 2022 Apr 28;13(1):2325. doi: 10.1038/s41467-022-29967-1.
8
Axial elongation of caudalized human organoids mimics aspects of neural tube development.
Development. 2021 Jun 15;148(12). doi: 10.1242/dev.198275. Epub 2021 Jun 18.
9
The Role of Fibroblast Growth Factor Signaling in Somitogenesis.
DNA Cell Biol. 2023 Oct;42(10):580-584. doi: 10.1089/dna.2023.0226. Epub 2023 Jul 18.
10
Controlling organoid symmetry breaking uncovers an excitable system underlying human axial elongation.
Cell. 2023 Feb 2;186(3):497-512.e23. doi: 10.1016/j.cell.2022.12.043. Epub 2023 Jan 18.

引用本文的文献

1
Robotic micromanipulation for patterned and complex organoid biofabrication.
Sci Adv. 2025 Sep 5;11(36):eadz0808. doi: 10.1126/sciadv.adz0808.
2
Stem cell-based human embryo models: current knowledge and open questions.
Stem Cell Res Ther. 2025 Aug 29;16(1):471. doi: 10.1186/s13287-025-04581-2.
3
Axial nephron fate switching demonstrates a plastic system tunable on demand.
Nat Commun. 2025 Aug 25;16(1):7912. doi: 10.1038/s41467-025-63290-9.
4
Arrayed single-gene perturbations identify drivers of human anterior neural tube closure.
bioRxiv. 2025 Jul 22:2025.07.21.665862. doi: 10.1101/2025.07.21.665862.
6
Advances in engineered models of peri-gastrulation.
iScience. 2025 May 14;28(6):112659. doi: 10.1016/j.isci.2025.112659. eCollection 2025 Jun 20.
7
Pluripotent cell states and fates in human embryo models.
Development. 2025 Apr 1;152(7). doi: 10.1242/dev.204565. Epub 2025 Apr 2.
8
Progress in understanding the vertebrate segmentation clock.
Nat Rev Genet. 2025 Mar 4. doi: 10.1038/s41576-025-00813-6.
9
Timely TGFβ signalling inhibition induces notochord.
Nature. 2025 Jan;637(8046):673-682. doi: 10.1038/s41586-024-08332-w. Epub 2024 Dec 18.
10
Spatially defined microenvironment for engineering organoids.
Biophys Rev (Melville). 2024 Oct 18;5(4):041302. doi: 10.1063/5.0198848. eCollection 2024 Dec.

本文引用的文献

1
Controlling organoid symmetry breaking uncovers an excitable system underlying human axial elongation.
Cell. 2023 Feb 2;186(3):497-512.e23. doi: 10.1016/j.cell.2022.12.043. Epub 2023 Jan 18.
2
Imaging the onset of oscillatory signaling dynamics during mouse embryo gastrulation.
Development. 2022 Jul 1;149(13). doi: 10.1242/dev.200083. Epub 2022 Jul 8.
3
Periodic formation of epithelial somites from human pluripotent stem cells.
Nat Commun. 2022 Apr 28;13(1):2325. doi: 10.1038/s41467-022-29967-1.
4
Rectified random cell motility as a mechanism for embryo elongation.
Development. 2022 Mar 15;149(6). doi: 10.1242/dev.199423. Epub 2022 Mar 28.
5
Rostrocaudal patterning and neural crest differentiation of human pre-neural spinal cord progenitors in vitro.
Stem Cell Reports. 2022 Apr 12;17(4):894-910. doi: 10.1016/j.stemcr.2022.02.018. Epub 2022 Mar 24.
6
MOrgAna: accessible quantitative analysis of organoids with machine learning.
Development. 2021 Sep 15;148(18). doi: 10.1242/dev.199611. Epub 2021 Sep 8.
7
Bioengineering in vitro models of embryonic development.
Stem Cell Reports. 2021 May 11;16(5):1104-1116. doi: 10.1016/j.stemcr.2021.04.005.
8
Understanding axial progenitor biology and .
Development. 2021 Feb 16;148(4):dev180612. doi: 10.1242/dev.180612.
9
In vitro systems: A new window to the segmentation clock.
Dev Growth Differ. 2021 Feb;63(2):140-153. doi: 10.1111/dgd.12710. Epub 2021 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验