Suppr超能文献

控制人类类器官的对称性破缺揭示了信号梯度驱动分段时钟波。

Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves.

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Cell. 2023 Feb 2;186(3):513-527.e19. doi: 10.1016/j.cell.2022.12.042. Epub 2023 Jan 18.

Abstract

Axial development of mammals involves coordinated morphogenetic events, including axial elongation, somitogenesis, and neural tube formation. To gain insight into the signals controlling the dynamics of human axial morphogenesis, we generated axially elongating organoids by inducing anteroposterior symmetry breaking of spatially coupled epithelial cysts derived from human pluripotent stem cells. Each organoid was composed of a neural tube flanked by presomitic mesoderm sequentially segmented into somites. Periodic activation of the somite differentiation gene MESP2 coincided in space and time with anteriorly traveling segmentation clock waves in the presomitic mesoderm of the organoids, recapitulating critical aspects of somitogenesis. Timed perturbations demonstrated that FGF and WNT signaling play distinct roles in axial elongation and somitogenesis, and that FGF signaling gradients drive segmentation clock waves. By generating and perturbing organoids that robustly recapitulate the architecture of multiple axial tissues in human embryos, this work offers a means to dissect mechanisms underlying human embryogenesis.

摘要

哺乳动物的轴向发育涉及协调的形态发生事件,包括轴向伸长、体节发生和神经管形成。为了深入了解控制人类轴向形态发生动力学的信号,我们通过诱导源自人类多能干细胞的空间耦合上皮囊肿的前后对称性破坏,生成了轴向伸长的类器官。每个类器官由神经管和依次分段为体节的生骨节间充质组成。体节分化基因 MESP2 的周期性激活在空间和时间上与类器官中生骨节间充质中向前传播的分段时钟波一致,再现了体节发生的关键方面。定时干扰表明,FGF 和 WNT 信号在轴向伸长和体节发生中发挥不同的作用,并且 FGF 信号梯度驱动分段时钟波。通过生成和干扰类器官,这些类器官能够强有力地再现人类胚胎中多个轴向组织的结构,这项工作提供了一种剖析人类胚胎发生机制的方法。

相似文献

4
Cellular and molecular control of vertebrate somitogenesis.脊椎动物体节形成的细胞和分子控制。
Nat Rev Mol Cell Biol. 2024 Jul;25(7):517-533. doi: 10.1038/s41580-024-00709-z. Epub 2024 Feb 28.
5
Recapitulating the human segmentation clock with pluripotent stem cells.用多能干细胞重现人类胚胎分割时钟。
Nature. 2020 Apr;580(7801):124-129. doi: 10.1038/s41586-020-2144-9. Epub 2020 Apr 1.
6
Somitogenesis.体节发生
Curr Top Dev Biol. 1998;38:225-87.
9
The Role of Fibroblast Growth Factor Signaling in Somitogenesis.成体发生中纤维母细胞生长因子信号的作用。
DNA Cell Biol. 2023 Oct;42(10):580-584. doi: 10.1089/dna.2023.0226. Epub 2023 Jul 18.

引用本文的文献

6
Advances in engineered models of peri-gastrulation.原肠胚形成期周围工程模型的进展。
iScience. 2025 May 14;28(6):112659. doi: 10.1016/j.isci.2025.112659. eCollection 2025 Jun 20.
7
Pluripotent cell states and fates in human embryo models.人类胚胎模型中的多能细胞状态与命运
Development. 2025 Apr 1;152(7). doi: 10.1242/dev.204565. Epub 2025 Apr 2.
9
Timely TGFβ signalling inhibition induces notochord.及时抑制转化生长因子β信号可诱导脊索形成。
Nature. 2025 Jan;637(8046):673-682. doi: 10.1038/s41586-024-08332-w. Epub 2024 Dec 18.
10
Spatially defined microenvironment for engineering organoids.用于构建类器官的空间定义微环境。
Biophys Rev (Melville). 2024 Oct 18;5(4):041302. doi: 10.1063/5.0198848. eCollection 2024 Dec.

本文引用的文献

7
Bioengineering in vitro models of embryonic development.体外胚胎发育生物工程模型。
Stem Cell Reports. 2021 May 11;16(5):1104-1116. doi: 10.1016/j.stemcr.2021.04.005.
8
Understanding axial progenitor biology and .理解轴向祖细胞生物学和。
Development. 2021 Feb 16;148(4):dev180612. doi: 10.1242/dev.180612.
9
In vitro systems: A new window to the segmentation clock.体外系统:分割时钟的新窗口。
Dev Growth Differ. 2021 Feb;63(2):140-153. doi: 10.1111/dgd.12710. Epub 2021 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验