Suppr超能文献

控制类器官的对称性破缺揭示了人类轴向伸长的兴奋系统。

Controlling organoid symmetry breaking uncovers an excitable system underlying human axial elongation.

机构信息

Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Cell. 2023 Feb 2;186(3):497-512.e23. doi: 10.1016/j.cell.2022.12.043. Epub 2023 Jan 18.

Abstract

The human embryo breaks symmetry to form the anterior-posterior axis of the body. As the embryo elongates along this axis, progenitors in the tail bud give rise to tissues that generate spinal cord, skeleton, and musculature. This raises the question of how the embryo achieves axial elongation and patterning. While ethics necessitate in vitro studies, the variability of organoid systems has hindered mechanistic insights. Here, we developed a bioengineering and machine learning framework that optimizes organoid symmetry breaking by tuning their spatial coupling. This framework enabled reproducible generation of axially elongating organoids, each possessing a tail bud and neural tube. We discovered that an excitable system composed of WNT/FGF signaling drives elongation by inducing a neuromesodermal progenitor-like signaling center. We discovered that instabilities in the excitable system are suppressed by secreted WNT inhibitors. Absence of these inhibitors led to ectopic tail buds and branches. Our results identify mechanisms governing stable human axial elongation.

摘要

人类胚胎打破对称性,形成身体的前后轴。随着胚胎沿着这个轴的延长,尾部芽基中的祖细胞产生了生成脊髓、骨骼和肌肉的组织。这就提出了胚胎如何实现轴向伸长和模式形成的问题。虽然伦理学需要进行体外研究,但类器官系统的可变性阻碍了对其机制的深入了解。在这里,我们开发了一个生物工程和机器学习框架,通过调整它们的空间耦合来优化类器官的对称性破坏。这个框架使我们能够重现具有尾部芽基和神经管的轴向伸长类器官。我们发现,由 WNT/FGF 信号组成的兴奋系统通过诱导类似于神经中胚层祖细胞的信号中心来驱动伸长。我们发现,兴奋系统中的不稳定性被分泌的 WNT 抑制剂所抑制。缺乏这些抑制剂会导致异位尾部芽基和分支。我们的结果确定了控制人类轴向稳定伸长的机制。

相似文献

引用本文的文献

9
Timely TGFβ signalling inhibition induces notochord.及时抑制转化生长因子β信号可诱导脊索形成。
Nature. 2025 Jan;637(8046):673-682. doi: 10.1038/s41586-024-08332-w. Epub 2024 Dec 18.

本文引用的文献

6
Integrated analysis of multimodal single-cell data.多模态单细胞数据的综合分析。
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
7
Bioengineering in vitro models of embryonic development.体外胚胎发育生物工程模型。
Stem Cell Reports. 2021 May 11;16(5):1104-1116. doi: 10.1016/j.stemcr.2021.04.005.
9
Understanding axial progenitor biology and .理解轴向祖细胞生物学和。
Development. 2021 Feb 16;148(4):dev180612. doi: 10.1242/dev.180612.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验