Suppr超能文献

呼吁有序:研究生物分子凝聚物中的结构化域。

A call to order: Examining structured domains in biomolecular condensates.

机构信息

Program in Chemistry and Chemical Biology, University of California, San Francisco, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, United States.

Program in Chemistry and Chemical Biology, University of California, San Francisco, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, United States.

出版信息

J Magn Reson. 2023 Jan;346:107318. doi: 10.1016/j.jmr.2022.107318.

Abstract

Diverse cellular processes have been observed or predicted to occur in biomolecular condensates, which are comprised of proteins and nucleic acids that undergo liquid-liquid phase separation (LLPS). Protein-driven LLPS often involves weak, multivalent interactions between intrinsically disordered regions (IDRs). Due to their inherent lack of defined tertiary structures, NMR has been a powerful resource for studying the behavior and interactions of IDRs in condensates. While IDRs in proteins are necessary for phase separation, core proteins enriched in condensates often contain structured domains that are essential for their function and contribute to phase separation. How phase separation can affect the structure and conformational dynamics of structured domains is critical for understanding how biochemical reactions can be effectively regulated in cellular condensates. In this perspective, we discuss the consequences phase separation can have on structured domains and outline NMR observables we believe are useful for assessing protein structure and dynamics in condensates.

摘要

多种细胞过程已被观察或预测发生在生物分子凝聚物中,这些凝聚物由经历液-液相分离(LLPS)的蛋白质和核酸组成。由蛋白质驱动的 LLPS 通常涉及固有无序区域(IDR)之间的弱、多价相互作用。由于其固有的缺乏明确的三级结构,NMR 一直是研究凝聚物中 IDR 行为和相互作用的强大资源。虽然蛋白质中的 IDR 对于相分离是必要的,但富含凝聚物的核心蛋白质通常含有结构域,这些结构域对于它们的功能至关重要,并有助于相分离。相分离如何影响结构域的结构和构象动力学对于理解生物化学反应如何在细胞凝聚物中得到有效调节至关重要。在这篇观点文章中,我们讨论了相分离对结构域的可能影响,并概述了我们认为有助于评估凝聚物中蛋白质结构和动力学的 NMR 可观测结果。

相似文献

1
A call to order: Examining structured domains in biomolecular condensates.
J Magn Reson. 2023 Jan;346:107318. doi: 10.1016/j.jmr.2022.107318.
3
Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry.
Chem Rev. 2022 Mar 23;122(6):6719-6748. doi: 10.1021/acs.chemrev.1c00774. Epub 2022 Feb 18.
5
The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy.
J Biol Chem. 2020 Feb 21;295(8):2375-2384. doi: 10.1074/jbc.REV119.009847. Epub 2020 Jan 7.
7
Biomolecular Condensates: Structure, Functions, Methods of Research.
Biochemistry (Mosc). 2024 Jan;89(Suppl 1):S205-S223. doi: 10.1134/S0006297924140116.
8
The regulation of liquid-liquid phase separated condensates containing nucleic acids.
FEBS J. 2024 Jun;291(11):2320-2331. doi: 10.1111/febs.16959. Epub 2023 Sep 21.
9
Liquid-liquid phase separation of tau: From molecular biophysics to physiology and disease.
Protein Sci. 2021 Jul;30(7):1294-1314. doi: 10.1002/pro.4093. Epub 2021 May 14.
10
Analysis of Phase-Separated Biomolecular Condensates in Cancer.
Methods Mol Biol. 2023;2660:345-356. doi: 10.1007/978-1-0716-3163-8_23.

引用本文的文献

1
Liquid-liquid phase separation: an emerging perspective on the tumorigenesis, progression, and treatment of tumors.
Front Immunol. 2025 Jun 26;16:1604015. doi: 10.3389/fimmu.2025.1604015. eCollection 2025.
3
Nonspecific interactions can lead to liquid-liquid phase separation in coiled-coil proteins models.
bioRxiv. 2025 May 15:2025.05.09.653163. doi: 10.1101/2025.05.09.653163.
4
Atomic resolution map of the solvent interactions driving SOD1 unfolding in CAPRIN1 condensates.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2408554121. doi: 10.1073/pnas.2408554121. Epub 2024 Aug 22.

本文引用的文献

1
A conceptual framework for understanding phase separation and addressing open questions and challenges.
Mol Cell. 2022 Jun 16;82(12):2201-2214. doi: 10.1016/j.molcel.2022.05.018. Epub 2022 Jun 7.
2
Atomic resolution dynamics of cohesive interactions in phase-separated Nup98 FG domains.
Nat Commun. 2022 Mar 21;13(1):1494. doi: 10.1038/s41467-022-28821-8.
5
Biophysical studies of phase separation integrating experimental and computational methods.
Curr Opin Struct Biol. 2021 Oct;70:78-86. doi: 10.1016/j.sbi.2021.04.004. Epub 2021 Jun 15.
6
Mechanistic dissection of increased enzymatic rate in a phase-separated compartment.
Nat Chem Biol. 2021 Jun;17(6):693-702. doi: 10.1038/s41589-021-00801-x. Epub 2021 May 25.
7
Identification of the Rigid Core for Aged Liquid Droplets of an RNA-Binding Protein Low Complexity Domain.
J Am Chem Soc. 2021 May 5;143(17):6657-6668. doi: 10.1021/jacs.1c02424. Epub 2021 Apr 25.
8
Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules.
Cell. 2021 May 13;184(10):2649-2664.e18. doi: 10.1016/j.cell.2021.03.031. Epub 2021 Apr 12.
9
Biomolecular condensates amplify mRNA decapping by biasing enzyme conformation.
Nat Chem Biol. 2021 May;17(5):615-623. doi: 10.1038/s41589-021-00774-x. Epub 2021 Mar 25.
10
NMR and EPR reveal a compaction of the RNA-binding protein FUS upon droplet formation.
Nat Chem Biol. 2021 May;17(5):608-614. doi: 10.1038/s41589-021-00752-3. Epub 2021 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验