Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Dewpoint Therapeutics GmbH, Dresden, Germany.
Elife. 2021 Sep 6;10:e69377. doi: 10.7554/eLife.69377.
Aberrant liquid-to-solid phase transitions of biomolecular condensates have been linked to various neurodegenerative diseases. However, the underlying molecular interactions that drive aging remain enigmatic. Here, we develop quantitative time-resolved crosslinking mass spectrometry to monitor protein interactions and dynamics inside condensates formed by the protein fused in sarcoma (FUS). We identify misfolding of the RNA recognition motif of FUS as a key driver of condensate aging. We demonstrate that the small heat shock protein HspB8 partitions into FUS condensates via its intrinsically disordered domain and prevents condensate hardening via condensate-specific interactions that are mediated by its α-crystallin domain (αCD). These αCD-mediated interactions are altered in a disease-associated mutant of HspB8, which abrogates the ability of HspB8 to prevent condensate hardening. We propose that stabilizing aggregation-prone folded RNA-binding domains inside condensates by molecular chaperones may be a general mechanism to prevent aberrant phase transitions.
生物分子凝聚物的异常液-固相变与各种神经退行性疾病有关。然而,导致衰老的潜在分子相互作用仍然是个谜。在这里,我们开发了定量的时分辨交联质谱来监测肉瘤融合蛋白(FUS)形成的凝聚物内部的蛋白质相互作用和动力学。我们发现 FUS 的 RNA 识别基序的错误折叠是凝聚物衰老的关键驱动因素。我们证明,小分子热休克蛋白 HspB8 通过其无规卷曲结构域与 FUS 凝聚物分离,并通过其 α-晶体蛋白结构域 (αCD) 介导的凝聚物特异性相互作用防止凝聚物硬化。HspB8 的疾病相关突变体改变了这些 αCD 介导的相互作用,从而削弱了 HspB8 防止凝聚物硬化的能力。我们提出,通过分子伴侣稳定凝聚物内易聚集的折叠 RNA 结合域可能是防止异常相变的一种普遍机制。