Department of Emergency Medicine, Hsinchu Cathay General Hospital, 30060, Hsinchu City, Taiwan.
Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, No. 510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242062, Taiwan.
J Digit Imaging. 2023 Jun;36(3):893-901. doi: 10.1007/s10278-023-00774-4. Epub 2023 Jan 19.
Acute epiglottitis (AE) is a life-threatening condition and needs to be recognized timely. Diagnosis of AE with a lateral neck radiograph yields poor reliability and sensitivity. Convolutional neural networks (CNN) are powerful tools to assist the analysis of medical images. This study aimed to develop an artificial intelligence model using CNN-based transfer learning to identify AE in lateral neck radiographs. All cases in this study are from two hospitals, a medical center, and a local teaching hospital in Taiwan. In this retrospective study, we collected 251 lateral neck radiographs of patients with AE and 936 individuals without AE. Neck radiographs obtained from patients without and with AE were used as the input for model transfer learning in a pre-trained CNN including Inception V3, Densenet201, Resnet101, VGG19, and Inception V2 to select the optimal model. We used five-fold cross-validation to estimate the performance of the selected model. The confusion matrix of the final model was analyzed. We found that Inception V3 yielded the best results as the optimal model among all pre-train models. Based on the average value of the fivefold cross-validation, the confusion metrics were obtained: accuracy = 0.92, precision = 0.94, recall = 0.90, and area under the curve (AUC) = 0.96. Using the Inception V3-based model can provide an excellent performance to identify AE based on radiographic images. We suggest using the CNN-based model which can offer a non-invasive, accurate, and fast diagnostic method for AE in the future.
急性会厌炎(AE)是一种危及生命的疾病,需要及时识别。侧位颈部 X 光片诊断 AE 的可靠性和敏感性较差。卷积神经网络(CNN)是辅助医学图像分析的强大工具。本研究旨在开发一种基于 CNN 的迁移学习人工智能模型,以识别侧位颈部 X 光片中的 AE。本研究中的所有病例均来自台湾的一家医学中心和一家当地教学医院的两家医院。在这项回顾性研究中,我们收集了 251 例 AE 患者的侧位颈部 X 光片和 936 例无 AE 患者的 X 光片。将来自无 AE 和有 AE 患者的颈部 X 光片作为输入,用于在经过预训练的 CNN 中进行模型迁移学习,该 CNN 包括 Inception V3、Densenet201、Resnet101、VGG19 和 Inception V2,以选择最佳模型。我们使用五重交叉验证来估计所选模型的性能。最后模型的混淆矩阵进行了分析。我们发现,在所有预训练模型中,Inception V3 作为最优模型产生了最佳结果。基于五重交叉验证的平均值,得到了混淆指标:准确性=0.92、精确度=0.94、召回率=0.90、曲线下面积(AUC)=0.96。使用基于 Inception V3 的模型可以基于影像学图像提供识别 AE 的出色性能。我们建议在未来使用基于 CNN 的模型,为 AE 提供一种非侵入性、准确和快速的诊断方法。