Suppr超能文献

利用卷积神经网络的迁移学习在颈部 X 光片中识别急性会厌炎。

Using Transfer Learning of Convolutional Neural Network on Neck Radiographs to Identify Acute Epiglottitis.

机构信息

Department of Emergency Medicine, Hsinchu Cathay General Hospital, 30060, Hsinchu City, Taiwan.

Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, No. 510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242062, Taiwan.

出版信息

J Digit Imaging. 2023 Jun;36(3):893-901. doi: 10.1007/s10278-023-00774-4. Epub 2023 Jan 19.

Abstract

Acute epiglottitis (AE) is a life-threatening condition and needs to be recognized timely. Diagnosis of AE with a lateral neck radiograph yields poor reliability and sensitivity. Convolutional neural networks (CNN) are powerful tools to assist the analysis of medical images. This study aimed to develop an artificial intelligence model using CNN-based transfer learning to identify AE in lateral neck radiographs. All cases in this study are from two hospitals, a medical center, and a local teaching hospital in Taiwan. In this retrospective study, we collected 251 lateral neck radiographs of patients with AE and 936 individuals without AE. Neck radiographs obtained from patients without and with AE were used as the input for model transfer learning in a pre-trained CNN including Inception V3, Densenet201, Resnet101, VGG19, and Inception V2 to select the optimal model. We used five-fold cross-validation to estimate the performance of the selected model. The confusion matrix of the final model was analyzed. We found that Inception V3 yielded the best results as the optimal model among all pre-train models. Based on the average value of the fivefold cross-validation, the confusion metrics were obtained: accuracy = 0.92, precision = 0.94, recall = 0.90, and area under the curve (AUC) = 0.96. Using the Inception V3-based model can provide an excellent performance to identify AE based on radiographic images. We suggest using the CNN-based model which can offer a non-invasive, accurate, and fast diagnostic method for AE in the future.

摘要

急性会厌炎(AE)是一种危及生命的疾病,需要及时识别。侧位颈部 X 光片诊断 AE 的可靠性和敏感性较差。卷积神经网络(CNN)是辅助医学图像分析的强大工具。本研究旨在开发一种基于 CNN 的迁移学习人工智能模型,以识别侧位颈部 X 光片中的 AE。本研究中的所有病例均来自台湾的一家医学中心和一家当地教学医院的两家医院。在这项回顾性研究中,我们收集了 251 例 AE 患者的侧位颈部 X 光片和 936 例无 AE 患者的 X 光片。将来自无 AE 和有 AE 患者的颈部 X 光片作为输入,用于在经过预训练的 CNN 中进行模型迁移学习,该 CNN 包括 Inception V3、Densenet201、Resnet101、VGG19 和 Inception V2,以选择最佳模型。我们使用五重交叉验证来估计所选模型的性能。最后模型的混淆矩阵进行了分析。我们发现,在所有预训练模型中,Inception V3 作为最优模型产生了最佳结果。基于五重交叉验证的平均值,得到了混淆指标:准确性=0.92、精确度=0.94、召回率=0.90、曲线下面积(AUC)=0.96。使用基于 Inception V3 的模型可以基于影像学图像提供识别 AE 的出色性能。我们建议在未来使用基于 CNN 的模型,为 AE 提供一种非侵入性、准确和快速的诊断方法。

相似文献

1
Using Transfer Learning of Convolutional Neural Network on Neck Radiographs to Identify Acute Epiglottitis.
J Digit Imaging. 2023 Jun;36(3):893-901. doi: 10.1007/s10278-023-00774-4. Epub 2023 Jan 19.
3
Deep learning methods in the diagnosis of sacroiliitis from plain pelvic radiographs.
Mod Rheumatol. 2023 Jan 3;33(1):202-206. doi: 10.1093/mr/roab124.
5
Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm.
J Dent. 2018 Oct;77:106-111. doi: 10.1016/j.jdent.2018.07.015. Epub 2018 Jul 26.
7
Performance of a convolutional neural network algorithm for tooth detection and numbering on periapical radiographs.
Dentomaxillofac Radiol. 2022 Mar 1;51(3):20210246. doi: 10.1259/dmfr.20210246. Epub 2021 Oct 8.
8
CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks.
PLoS One. 2020 Nov 9;15(11):e0242013. doi: 10.1371/journal.pone.0242013. eCollection 2020.
9
Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks.
Clin Radiol. 2018 May;73(5):439-445. doi: 10.1016/j.crad.2017.11.015. Epub 2017 Dec 18.

引用本文的文献

1
Deep Convolutional Backbone Comparison for Automated PET Image Quality Assessment.
IEEE Trans Radiat Plasma Med Sci. 2024 Nov;8(8):893-901. doi: 10.1109/TRPMS.2024.3436697.
3
Advancements in Artificial Intelligence in Emergency Medicine in Taiwan: A Narrative Review.
J Acute Med. 2024 Mar 1;14(1):9-19. doi: 10.6705/j.jacme.202403_14(1).0002.

本文引用的文献

1
High-performance medicine: the convergence of human and artificial intelligence.
Nat Med. 2019 Jan;25(1):44-56. doi: 10.1038/s41591-018-0300-7. Epub 2019 Jan 7.
2
Adult epiglottitis: Trends and predictors of mortality in over 30 thousand cases from 2007 to 2014.
Laryngoscope. 2019 May;129(5):1107-1112. doi: 10.1002/lary.27741. Epub 2018 Dec 24.
4
Computer-aided detection in chest radiography based on artificial intelligence: a survey.
Biomed Eng Online. 2018 Aug 22;17(1):113. doi: 10.1186/s12938-018-0544-y.
5
Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings.
J Electrocardiol. 2018 Nov-Dec;51(6S):S18-S21. doi: 10.1016/j.jelectrocard.2018.08.008. Epub 2018 Aug 10.
6
Diagnostic accuracy of radiographs for detecting supraglottitis: a systematic review and meta-analysis.
Acute Med Surg. 2016 Nov 10;4(2):190-197. doi: 10.1002/ams2.256. eCollection 2017 Apr.
8
Clinical characteristics of children and adolescents with croup and epiglottitis who visited 146 Emergency Departments in Korea.
Korean J Pediatr. 2015 Oct;58(10):380-5. doi: 10.3345/kjp.2015.58.10.380. Epub 2015 Oct 21.
9
Diagnostic accuracy of lateral neck radiography in ruling out supraglottitis: a prospective observational study.
Emerg Med J. 2015 May;32(5):348-52. doi: 10.1136/emermed-2013-203340. Epub 2014 Aug 20.
10
Sore throat, odynophagia, hoarseness, and a muffled, high-pitched voice.
Cleve Clin J Med. 2013 Mar;80(3):144-5. doi: 10.3949/ccjm.80a.12056.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验