Suppr超能文献

基于图卷积网络的单细胞分类。

Single-cell classification using graph convolutional networks.

机构信息

Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA.

出版信息

BMC Bioinformatics. 2021 Jul 8;22(1):364. doi: 10.1186/s12859-021-04278-2.

Abstract

BACKGROUND

Analyzing single-cell RNA sequencing (scRNAseq) data plays an important role in understanding the intrinsic and extrinsic cellular processes in biological and biomedical research. One significant effort in this area is the identification of cell types. With the availability of a huge amount of single cell sequencing data and discovering more and more cell types, classifying cells into known cell types has become a priority nowadays. Several methods have been introduced to classify cells utilizing gene expression data. However, incorporating biological gene interaction networks has been proved valuable in cell classification procedures.

RESULTS

In this study, we propose a multimodal end-to-end deep learning model, named sigGCN, for cell classification that combines a graph convolutional network (GCN) and a neural network to exploit gene interaction networks. We used standard classification metrics to evaluate the performance of the proposed method on the within-dataset classification and the cross-dataset classification. We compared the performance of the proposed method with those of the existing cell classification tools and traditional machine learning classification methods.

CONCLUSIONS

Results indicate that the proposed method outperforms other commonly used methods in terms of classification accuracy and F1 scores. This study shows that the integration of prior knowledge about gene interactions with gene expressions using GCN methodologies can extract effective features improving the performance of cell classification.

摘要

背景

分析单细胞 RNA 测序 (scRNAseq) 数据在理解生物和生物医学研究中内在和外在的细胞过程中起着重要作用。该领域的一项重要工作是识别细胞类型。随着大量单细胞测序数据的出现和越来越多的细胞类型的发现,将细胞分类为已知的细胞类型已成为当务之急。已经提出了几种利用基因表达数据对细胞进行分类的方法。然而,在细胞分类过程中结合生物基因相互作用网络已被证明是有价值的。

结果

在这项研究中,我们提出了一种名为 sigGCN 的用于细胞分类的多模态端到端深度学习模型,该模型结合了图卷积网络 (GCN) 和神经网络来利用基因相互作用网络。我们使用标准分类指标来评估该方法在数据集内分类和跨数据集分类中的性能。我们将所提出的方法的性能与现有的细胞分类工具和传统的机器学习分类方法进行了比较。

结论

结果表明,该方法在分类准确性和 F1 分数方面优于其他常用方法。本研究表明,使用 GCN 方法将基因相互作用的先验知识与基因表达相结合,可以提取有效的特征,从而提高细胞分类的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验