Wood Alexander, Lozovoi Artur, Zhang Zi-Huai, Sharma Sachin, López-Morales Gabriel I, Jayakumar Harishankar, de Leon Nathalie P, Meriles Carlos A
Department. of Physics, CUNY-City College of New York, New York, New York 10031, United States.
University of Melbourne, Parkville VIC 3010, Australia.
Nano Lett. 2023 Feb 8;23(3):1017-1022. doi: 10.1021/acs.nanolett.2c04514. Epub 2023 Jan 20.
The silicon vacancy (SiV) center in diamond is typically found in three stable charge states, SiV, SiV, and SiV, but studying the processes leading to their formation is challenging, especially at room temperature, due to their starkly different photoluminescence rates. Here, we use confocal fluorescence microscopy to activate and probe charge interconversion between all three charge states under ambient conditions. In particular, we witness the formation of SiV via the two-step capture of diffusing, photogenerated holes, a process we expose both through direct SiV fluorescence measurements at low temperatures and confocal microscopy observations in the presence of externally applied electric fields. In addition, we show that continuous red illumination induces the converse process, first transforming SiV into SiV and then into SiV. Our results shed light on the charge dynamics of SiV and promise opportunities for nanoscale sensing and quantum information processing.
金刚石中的硅空位(SiV)中心通常以三种稳定电荷态存在,即SiV、SiV和SiV,但由于它们的光致发光速率截然不同,研究导致其形成的过程具有挑战性,尤其是在室温下。在这里,我们使用共聚焦荧光显微镜在环境条件下激活并探测所有三种电荷态之间的电荷相互转换。特别是,我们通过两步捕获扩散的光生空穴见证了SiV的形成,这一过程我们通过低温下的直接SiV荧光测量和在外部施加电场情况下的共聚焦显微镜观察得以揭示。此外,我们表明持续的红色光照会引发相反的过程,首先将SiV转变为SiV,然后再转变为SiV。我们的结果揭示了SiV的电荷动力学,并为纳米级传感和量子信息处理带来了机遇。