Suppr超能文献

基于深度卷积神经网络的口腔扁平苔藓人工智能诊断

Artificial Intelligence-Based Diagnosis of Oral Lichen Planus Using Deep Convolutional Neural Networks.

作者信息

Achararit Paniti, Manaspon Chawan, Jongwannasiri Chavin, Phattarataratip Ekarat, Osathanon Thanaphum, Sappayatosok Kraisorn

机构信息

Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand.

Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.

出版信息

Eur J Dent. 2023 Oct;17(4):1275-1282. doi: 10.1055/s-0042-1760300. Epub 2023 Jan 20.

Abstract

OBJECTIVE

The aim of this study was to employ artificial intelligence (AI) via convolutional neural network (CNN) for the separation of oral lichen planus (OLP) and non-OLP in biopsy-proven clinical cases of OLP and non-OLP.

MATERIALS AND METHODS

Data comprised of clinical photographs of 609 OLP and 480 non-OLP which diagnosis has been confirmed histopathologically. Fifty-five photographs from the OLP and non-OLP groups were randomly selected for use as the test dataset, while the remaining were used as training and validation datasets. Data augmentation was performed on the training dataset to increase the number and variation of photographs. Performance metrics for the CNN model performance included accuracy, positive predictive value, negative predictive value, sensitivity, specificity, and F1-score. Gradient-weighted class activation mapping was also used to visualize the important regions associated with discriminative clinical features on which the model relies.

RESULTS

All the selected CNN models were able to diagnose OLP and non-OLP lesions using photographs. The performance of the Xception model was significantly higher than that of the other models in terms of overall accuracy and F1-score.

CONCLUSIONS

Our demonstration shows that CNN models can achieve an accuracy of 82 to 88%. Xception model performed the best in terms of both accuracy and F1-score.

摘要

目的

本研究旨在通过卷积神经网络(CNN)利用人工智能(AI)对经活检证实的口腔扁平苔藓(OLP)和非OLP临床病例进行OLP与非OLP的区分。

材料与方法

数据包括609例OLP和480例非OLP的临床照片,其诊断已通过组织病理学证实。从OLP组和非OLP组中随机选择55张照片用作测试数据集,其余用作训练和验证数据集。对训练数据集进行数据增强以增加照片的数量和变化。CNN模型性能的评估指标包括准确率、阳性预测值、阴性预测值、灵敏度、特异度和F1分数。还使用梯度加权类激活映射来可视化与模型所依赖的鉴别性临床特征相关的重要区域。

结果

所有选定的CNN模型都能够使用照片诊断OLP和非OLP病变。就总体准确率和F1分数而言,Xception模型的性能显著高于其他模型。

结论

我们的论证表明,CNN模型可以达到82%至88%的准确率。Xception模型在准确率和F1分数方面表现最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e368/10756816/7ed10c0e2b58/10-1055-s-0042-1760300-i2292395-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验