Suppr超能文献

基于引导注意力推理网络的可解释深度学习方法用于口腔癌分类。

Interpretable deep learning approach for oral cancer classification using guided attention inference network.

机构信息

The University of Arizona, Wyant College of Optical Sciences, Tucson, Arizona, United States.

Mazumdar Shaw Medical Centre, Bangalore, Karnataka, India.

出版信息

J Biomed Opt. 2022 Jan;27(1). doi: 10.1117/1.JBO.27.1.015001.

Abstract

SIGNIFICANCE

Convolutional neural networks (CNNs) show the potential for automated classification of different cancer lesions. However, their lack of interpretability and explainability makes CNNs less than understandable. Furthermore, CNNs may incorrectly concentrate on other areas surrounding the salient object, rather than the network's attention focusing directly on the object to be recognized, as the network has no incentive to focus solely on the correct subjects to be detected. This inhibits the reliability of CNNs, especially for biomedical applications.

AIM

Develop a deep learning training approach that could provide understandability to its predictions and directly guide the network to concentrate its attention and accurately delineate cancerous regions of the image.

APPROACH

We utilized Selvaraju et al.'s gradient-weighted class activation mapping to inject interpretability and explainability into CNNs. We adopted a two-stage training process with data augmentation techniques and Li et al.'s guided attention inference network (GAIN) to train images captured using our customized mobile oral screening devices. The GAIN architecture consists of three streams of network training: classification stream, attention mining stream, and bounding box stream. By adopting the GAIN training architecture, we jointly optimized the classification and segmentation accuracy of our CNN by treating these attention maps as reliable priors to develop attention maps with more complete and accurate segmentation.

RESULTS

The network's attention map will help us to actively understand what the network is focusing on and looking at during its decision-making process. The results also show that the proposed method could guide the trained neural network to highlight and focus its attention on the correct lesion areas in the images when making a decision, rather than focusing its attention on relevant yet incorrect regions.

CONCLUSIONS

We demonstrate the effectiveness of our approach for more interpretable and reliable oral potentially malignant lesion and malignant lesion classification.

摘要

意义

卷积神经网络(CNN)显示了自动分类不同癌症病变的潜力。然而,它们缺乏可解释性和可说明性,使得 CNN 难以理解。此外,CNN 可能错误地将注意力集中在 salient object 周围的其他区域,而不是网络直接将注意力集中在要识别的对象上,因为网络没有激励将注意力仅集中在要检测的正确对象上。这抑制了 CNN 的可靠性,尤其是在生物医学应用中。

目的

开发一种深度学习训练方法,使其预测具有可理解性,并直接引导网络集中注意力,准确描绘图像中的癌变区域。

方法

我们利用 Selvaraju 等人的梯度加权类激活映射为 CNN 注入可解释性和可说明性。我们采用两阶段训练过程,结合数据增强技术和 Li 等人的引导注意力推理网络(GAIN)来训练使用我们定制的移动口腔筛查设备拍摄的图像。GAIN 架构由三个网络训练流组成:分类流、注意力挖掘流和边界框流。通过采用 GAIN 训练架构,我们通过将这些注意力图视为可靠的先验信息,共同优化了我们的 CNN 的分类和分割准确性,从而开发出具有更完整和准确分割的注意力图。

结果

网络的注意力图将帮助我们主动了解网络在决策过程中关注和查看的内容。结果还表明,所提出的方法可以引导经过训练的神经网络在做出决策时将注意力集中在图像中的正确病变区域上,而不是将注意力集中在相关但不正确的区域上。

结论

我们证明了我们的方法对于更具可解释性和可靠性的口腔潜在恶性病变和恶性病变分类的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab4f/8754153/1ec316fa4176/JBO-027-015001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验