Suppr超能文献

基于多通道脑电信号音乐特征的情绪状态分类

Emotional State Classification from MUSIC-Based Features of Multichannel EEG Signals.

作者信息

Hossain Sakib Abrar, Rahman Md Asadur, Chakrabarty Amitabha, Rashid Mohd Abdur, Kuwana Anna, Kobayashi Haruo

机构信息

Department of Computer Science and Engineering, Brac University, Dhaka 1212, Bangladesh.

NSU Genome Research Institute, North South University, Dhaka 1229, Bangladesh.

出版信息

Bioengineering (Basel). 2023 Jan 11;10(1):99. doi: 10.3390/bioengineering10010099.

Abstract

Electroencephalogram (EEG)-based emotion recognition is a computationally challenging issue in the field of medical data science that has interesting applications in cognitive state disclosure. Generally, EEG signals are classified from frequency-based features that are often extracted using non-parametric models such as Welch's power spectral density (PSD). These non-parametric methods are not computationally sound due to having complexity and extended run time. The main purpose of this work is to apply the multiple signal classification (MUSIC) model, a parametric-based frequency-spectrum-estimation technique to extract features from multichannel EEG signals for emotional state classification from the SEED dataset. The main challenge of using MUSIC in EEG feature extraction is to tune its parameters for getting the discriminative features from different classes, which is a significant contribution of this work. Another contribution is to show some flaws of this dataset for the first time that contributed to achieving high classification accuracy in previous research works. This work used MUSIC features to classify three emotional states and achieve 97% accuracy on average using an artificial neural network. The proposed MUSIC model optimizes a 95-96% run time compared with the conventional classical non-parametric technique (Welch's PSD) for feature extraction.

摘要

基于脑电图(EEG)的情绪识别是医学数据科学领域中一个具有计算挑战性的问题,在认知状态揭示方面有着有趣的应用。一般来说,EEG信号是根据基于频率的特征进行分类的,这些特征通常使用非参数模型(如韦尔奇功率谱密度(PSD))来提取。由于具有复杂性和较长的运行时间,这些非参数方法在计算上并不合理。这项工作的主要目的是应用多重信号分类(MUSIC)模型,一种基于参数的频谱估计技术,从多通道EEG信号中提取特征,用于对SEED数据集中的情绪状态进行分类。在EEG特征提取中使用MUSIC的主要挑战是调整其参数以从不同类别中获取判别性特征,这是这项工作的一个重要贡献。另一个贡献是首次指出该数据集的一些缺陷,这些缺陷在之前的研究工作中有助于实现高分类准确率。这项工作使用MUSIC特征对三种情绪状态进行分类,使用人工神经网络平均准确率达到97%。与传统的经典非参数技术(韦尔奇PSD)进行特征提取相比,所提出的MUSIC模型将运行时间优化了95 - 96%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9de9/9854769/f14c6cd05c16/bioengineering-10-00099-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验