Suppr超能文献

傅里叶变换红外光谱法快速判别代谢综合征的双重分类方法。

Dual Classification Approach for the Rapid Discrimination of Metabolic Syndrome by FTIR.

机构信息

Department of Chemistry, University of La Rioja, 26006 Logroño, Spain.

Infectious Diseases, Microbiota and Metabolism Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain.

出版信息

Biosensors (Basel). 2022 Dec 23;13(1):15. doi: 10.3390/bios13010015.

Abstract

Metabolic syndrome is a complex of interrelated risk factors for cardiovascular disease and diabetes. Thus, new point-of-care diagnostic tools are essential for unambiguously distinguishing MetS patients, providing results in rapid time. Herein, we evaluated the potential of Fourier transform infrared spectroscopy combined with chemometric tools to detect spectra markers indicative of metabolic syndrome. Around 105 plasma samples were collected and divided into two groups according to the presence of at least three of the five clinical parameters used for MetS diagnosis. A dual classification approach was studied based on selecting the most important spectral variable and classification methods, linear discriminant analysis (LDA) and SIMCA class modelling, respectively. The same classification methods were applied to measured clinical parameters at our disposal. Thus, the classification's performance on reduced spectra fingerprints and measured clinical parameters were compared. Both approaches achieved excellent discrimination results among groups, providing almost 100% accuracy. Nevertheless, SIMCA class modelling showed higher classification performance between MetS and no MetS for IR-reduced variables compared to clinical variables. We finally discuss the potential of this method to be used as a supportive diagnostic or screening tool in clinical routines.

摘要

代谢综合征是心血管疾病和糖尿病相关多种危险因素的综合。因此,新的即时诊断工具对于明确区分代谢综合征患者、快速提供结果至关重要。在这里,我们评估了傅里叶变换红外光谱结合化学计量学工具来检测代谢综合征相关光谱标志物的潜力。大约收集了 105 个血浆样本,并根据至少有五个用于代谢综合征诊断的临床参数中的三个来将其分为两组。研究了一种基于选择最重要的光谱变量和分类方法(线性判别分析(LDA)和 SIMCA 分类建模)的双重分类方法。分别应用相同的分类方法对我们所掌握的测量临床参数进行分类。因此,比较了基于简化光谱指纹和测量临床参数的分类性能。这两种方法在组间都实现了出色的区分效果,准确率接近 100%。然而,与临床变量相比,SIMCA 分类模型在 IR 简化变量中显示出对代谢综合征和非代谢综合征的更高分类性能。我们最终讨论了该方法在临床常规中用作辅助诊断或筛选工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3e4/9855898/a324f98670a2/biosensors-13-00015-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验