Suppr超能文献

基于昏迷恢复量表修订版子评分预测长期意识障碍患者的意识恢复:基于机器学习的预后指数验证

Predicting Long-Term Recovery of Consciousness in Prolonged Disorders of Consciousness Based on Coma Recovery Scale-Revised Subscores: Validation of a Machine Learning-Based Prognostic Index.

作者信息

Magliacano Alfonso, Liuzzi Piergiuseppe, Formisano Rita, Grippo Antonello, Angelakis Efthymios, Thibaut Aurore, Gosseries Olivia, Lamberti Gianfranco, Noé Enrique, Bagnato Sergio, Edlow Brian L, Lejeune Nicolas, Veeramuthu Vigneswaran, Trojano Luigi, Zasler Nathan, Schnakers Caroline, Bartolo Michelangelo, Mannini Andrea, Estraneo Anna

机构信息

IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Firenze, Italy.

Polo Specialistico Riabilitativo, Fondazione Don Carlo Gnocchi, 83054 Sant'Angelo dei Lombardi, Italy.

出版信息

Brain Sci. 2022 Dec 27;13(1):51. doi: 10.3390/brainsci13010051.

Abstract

Prognosis of prolonged Disorders of Consciousness (pDoC) is influenced by patients' clinical diagnosis and Coma Recovery Scale-Revised (CRS-R) total score. We compared the prognostic accuracy of a novel Consciousness Domain Index (CDI) with that of clinical diagnosis and CRS-R total score, for recovery of full consciousness at 6-, 12-, and 24-months post-injury. The CDI was obtained by a combination of the six CRS-R subscales via an unsupervised machine learning technique. We retrospectively analyzed data on 143 patients with pDoC (75 in Minimally Conscious State; 102 males; median age = 53 years; IQR = 35; time post-injury = 1-3 months) due to different etiologies enrolled in an International Brain Injury Association Disorders of Consciousness Special Interest Group (IBIA DoC-SIG) multicenter longitudinal study. Univariate and multivariate analyses were utilized to assess the association between outcomes and the CDI, compared to clinical diagnosis and CRS-R. The CDI, the clinical diagnosis, and the CRS-R total score were significantly associated with a good outcome at 6, 12 and 24 months. The CDI showed the highest univariate prediction accuracy and sensitivity, and regression models including the CDI provided the highest values of explained variance. A combined scoring system of the CRS-R subscales by unsupervised machine learning may improve clinical ability to predict recovery of consciousness in patients with pDoC.

摘要

长期意识障碍(pDoC)的预后受患者临床诊断及昏迷恢复量表修订版(CRS-R)总分的影响。我们比较了一种新型意识领域指数(CDI)与临床诊断及CRS-R总分在伤后6个月、12个月和24个月时对完全意识恢复的预后预测准确性。CDI是通过无监督机器学习技术将CRS-R的六个子量表组合得到的。我们回顾性分析了国际脑损伤协会意识障碍特别兴趣小组(IBIA DoC-SIG)多中心纵向研究中纳入的143例因不同病因导致pDoC的患者的数据(75例处于最小意识状态;102例男性;年龄中位数 = 53岁;四分位距 = 35;伤后时间 = 1 - 3个月)。与临床诊断和CRS-R相比,采用单因素和多因素分析来评估预后与CDI之间的关联。CDI、临床诊断及CRS-R总分在6个月、12个月和24个月时均与良好预后显著相关。CDI显示出最高的单因素预测准确性和敏感性,包含CDI的回归模型解释方差值最高。通过无监督机器学习对CRS-R子量表进行联合评分系统可能会提高临床预测pDoC患者意识恢复的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4620/9856168/48c7dabe0500/brainsci-13-00051-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验