Beltrán-Partida Ernesto, Valdez-Salas Benjamín, García-López Portillo Martha, Gutierrez-Perez Claudia, Castillo-Uribe Sandra, Salvador-Carlos Jorge, Alcocer-Cañez José, Cheng Nelson
Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico.
Coordinación Clínica de Cirugía, Hospital General de Zona No. 30, Instituto Mexicano del Seguro Social (IMSS), Av. Lerdo de Tejada s/n, Mexicali C.P. 21100, Baja California, Mexico.
Materials (Basel). 2023 Jan 13;16(2):794. doi: 10.3390/ma16020794.
Atherosclerosis lesions are described as the formation of an occlusive wall-vessel plaque that can exacerbate infarctions, strokes, and even death. Furthermore, atherosclerosis damages the endothelium integrity, avoiding proper regeneration after stent implantation. Therefore, we investigate the beneficial effects of TiO nanotubes (NTs) in promoting the initial response of detrimental human atherosclerotic-derived endothelial cells (AThEC). We synthesized and characterized NTs on Ti6Al4V by anodization. We isolated AThEC and tested the adhesion long-lasting proliferation activity, and the modulation of focal adhesions conducted on the materials. Moreover, ultrastructural cell-surface contact at the nanoscale and membrane roughness were evaluated to explain the results. Our findings depicted improved filopodia and focal adhesions stimulated by the NTs. Similarly, the NTs harbored long-lasting proliferative metabolism after 5 days, explained by overcoming cell-contact interactions at the nanoscale. Furthermore, the senescent activity detected in the AThEC could be mitigated by the modified membrane roughness and cellular stretch orchestrated by the NTs. Importantly, the NTs stimulate the initial endothelial anchorage and metabolic recovery required to regenerate the endothelial monolayer. Despite the dysfunctional status of the AThEC, our study brings new evidence for the potential application of nano-configured biomaterials for innovation in stent technologies.
动脉粥样硬化病变被描述为形成一种闭塞性的血管壁斑块,这种斑块会加重梗死、中风甚至导致死亡。此外,动脉粥样硬化会损害内皮完整性,阻碍支架植入后内皮的正常再生。因此,我们研究了二氧化钛纳米管(NTs)对促进源自人类有害动脉粥样硬化的内皮细胞(AThEC)初始反应的有益作用。我们通过阳极氧化法在Ti6Al4V上合成并表征了NTs。我们分离出AThEC,并测试了其在材料上的黏附、持久增殖活性以及粘着斑的调节情况。此外,还评估了纳米尺度下的超微结构细胞表面接触和膜粗糙度以解释实验结果。我们的研究结果表明,NTs刺激了丝状伪足和粘着斑的改善。同样,NTs在5天后具有持久的增殖代谢,这可以通过克服纳米尺度下的细胞接触相互作用来解释。此外,NTs通过调节膜粗糙度和细胞伸展减轻了在AThEC中检测到的衰老活性。重要的是,NTs刺激了内皮单层再生所需的初始内皮锚定和代谢恢复。尽管AThEC功能失调,但我们的研究为纳米结构生物材料在支架技术创新中的潜在应用提供了新的证据。