Suppr超能文献

基于数据驱动的透明隔热纳米级层状氧化物设计

Data-Driven Design of Transparent Thermal Insulating Nanoscale Layered Oxides.

作者信息

Wu Yen-Ju, Xu Yibin

机构信息

Research and Service Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.

International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki, Japan.

出版信息

Micromachines (Basel). 2023 Jan 11;14(1):186. doi: 10.3390/mi14010186.

Abstract

Predicting the interfacial thermal resistance (ITR) for various material systems is a time-consuming process. In this study, we applied our previously proposed ITR machine learning models to discover the material systems that satisfy both high transparency and low thermal conductivity. The selected material system of TiO2/SiO2 shows a high ITR of 26.56 m2K/GW, which is in good agreement with the predicted value. The nanoscale layered TiO2/SiO2 thin films synthesized by sputtering exhibits ultralow thermal conductivity (0.21 W/mK) and high transparency (>90%, 380−800 nm). The reduction of the thermal conductivity is achieved by the high density of the interfaces with a high ITR rather than the change of the intrinsic thermal conductivity. The thermal conductivity of TiO2 is observed to be 1.56 W/mK with the film thickness in the range of 5−50 nm. Furthermore, the strong substrate dependence is confirmed as the thermal conductivity of the nanoscale layered TiO2/SiO2 thin films on quartz glass is three times lower than that on Si. The proposed TiO2/SiO2 composites have higher transparency and robustness, good adaptivity to electronics, and lower cost than the current transparent thermal insulating materials such as aerogels and polypropylene. The good agreement of the experimental ITR with the prediction and the low thermal conductivity of the layered thin films promise this strategy has great potential for accelerating the development of transparent thermal insulators.

摘要

预测各种材料体系的界面热阻(ITR)是一个耗时的过程。在本研究中,我们应用我们之前提出的ITR机器学习模型来发现同时满足高透明度和低导热率的材料体系。所选的TiO2/SiO2材料体系显示出26.56 m2K/GW的高ITR,这与预测值吻合良好。通过溅射合成的纳米级层状TiO2/SiO2薄膜表现出超低的导热率(0.21 W/mK)和高透明度(>90%,380−800 nm)。导热率的降低是通过具有高ITR的高密度界面实现的,而不是通过本征导热率的变化。观察到TiO2的导热率为1.56 W/mK,薄膜厚度在5−50 nm范围内。此外,证实了强烈的衬底依赖性,因为石英玻璃上的纳米级层状TiO2/SiO2薄膜的导热率比硅上的低三倍。与目前的透明隔热材料如气凝胶和聚丙烯相比,所提出的TiO2/SiO2复合材料具有更高的透明度和鲁棒性、对电子产品的良好适应性以及更低的成本。实验ITR与预测的良好吻合以及层状薄膜的低导热率表明该策略在加速透明隔热材料的发展方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5683/9861926/3b23c2cdc912/micromachines-14-00186-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验