文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

咪唑:药物化学中 privileged 结构的合成、功能化及物理化学性质。

Imidazole: Synthesis, Functionalization and Physicochemical Properties of a Privileged Structure in Medicinal Chemistry.

机构信息

Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.

Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.

出版信息

Molecules. 2023 Jan 13;28(2):838. doi: 10.3390/molecules28020838.


DOI:10.3390/molecules28020838
PMID:36677894
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9865940/
Abstract

Imidazole was first synthesized by Heinrich Debus in 1858 and was obtained by the reaction of glyoxal and formaldehyde in ammonia, initially called glyoxaline. The current literature provides much information about the synthesis, functionalization, physicochemical characteristics and biological role of imidazole. Imidazole is a structure that, despite being small, has a unique chemical complexity. It is a nucleus that is very practical and versatile in its construction/functionalization and can be considered a rich source of chemical diversity. Imidazole acts in extremely important processes for the maintenance of living organisms, such as catalysis in enzymatic processes. Imidazole-based compounds with antibacterial, anti-inflammatory, antidiabetic, antiparasitic, antituberculosis, antifungal, antioxidant, antitumor, antimalarial, anticancer, antidepressant and many others make up the therapeutic arsenal and new bioactive compounds proposed in the most diverse works. The interest and importance of imidazole-containing analogs in the field of medicinal chemistry is remarkable, and the understanding from the development of the first blockbuster drug cimetidine explores all the chemical and biological concepts of imidazole in the context of research and development of new drugs.

摘要

咪唑最早由 Heinrich Debus 于 1858 年合成,通过乙二醛和甲醛在氨中的反应得到,最初称为乙二嗪。目前的文献提供了大量关于咪唑的合成、功能化、物理化学特性和生物学作用的信息。咪唑是一种结构,尽管很小,但具有独特的化学复杂性。它是一种非常实用且多功能的核,在构建/功能化方面非常实用,可以被认为是化学多样性的丰富来源。咪唑在维持生物体的极其重要的过程中发挥作用,例如酶促过程中的催化作用。基于咪唑的化合物具有抗菌、抗炎、抗糖尿病、抗寄生虫、抗结核、抗真菌、抗氧化、抗肿瘤、抗疟原虫、抗癌、抗抑郁等作用,构成了治疗武器库,并在最多种多样的工作中提出了新的生物活性化合物。含咪唑类似物在药物化学领域的兴趣和重要性是显著的,从第一个重磅炸弹药物西咪替丁的开发中可以看出,在新药研发的背景下,人们对咪唑的所有化学和生物学概念都进行了探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/2dfbc76eef3b/molecules-28-00838-g043.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/324a9b74b8a6/molecules-28-00838-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/f4d8bf6f3500/molecules-28-00838-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/d05d8482baa8/molecules-28-00838-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/23d0824a5233/molecules-28-00838-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/193705750b35/molecules-28-00838-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/9d2b69cb0727/molecules-28-00838-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/828bc13372fb/molecules-28-00838-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/9cb896143466/molecules-28-00838-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/a623fc1efd19/molecules-28-00838-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/347aabf36a2b/molecules-28-00838-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/f0586a560188/molecules-28-00838-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/d5c0515c49fe/molecules-28-00838-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/bf8b7630a362/molecules-28-00838-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/0db27b4ecdb8/molecules-28-00838-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/53c88a708ada/molecules-28-00838-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/b55a9c9594c6/molecules-28-00838-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/9820d741daf4/molecules-28-00838-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/a04fd24b43de/molecules-28-00838-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/099cdfe18b84/molecules-28-00838-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/9e0ec4fa129d/molecules-28-00838-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/960e6fe38b3a/molecules-28-00838-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/cbbd97a6eb56/molecules-28-00838-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/6d8f3477cb8f/molecules-28-00838-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/4008c48cda29/molecules-28-00838-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/86ef59c5228b/molecules-28-00838-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/aa9861605d00/molecules-28-00838-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/517199c4f545/molecules-28-00838-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/0cee1a0cba78/molecules-28-00838-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/d36587954582/molecules-28-00838-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/df39c14e2af3/molecules-28-00838-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/c1de7f92d7d1/molecules-28-00838-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/74c7fcb1e289/molecules-28-00838-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/dbe10774dd38/molecules-28-00838-g033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/0c7650f63d4b/molecules-28-00838-g034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/5060b0677fe0/molecules-28-00838-g035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/12b45af11246/molecules-28-00838-g036.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/8daa3200e8f5/molecules-28-00838-g037.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/7903a1bc0d67/molecules-28-00838-g038.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/4a0d11d852d4/molecules-28-00838-g039.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/6897462a882c/molecules-28-00838-g040.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/07c4687a1f64/molecules-28-00838-g041.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/2dfbc76eef3b/molecules-28-00838-g043.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/324a9b74b8a6/molecules-28-00838-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/f4d8bf6f3500/molecules-28-00838-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/d05d8482baa8/molecules-28-00838-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/23d0824a5233/molecules-28-00838-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/193705750b35/molecules-28-00838-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/9d2b69cb0727/molecules-28-00838-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/828bc13372fb/molecules-28-00838-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/9cb896143466/molecules-28-00838-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/a623fc1efd19/molecules-28-00838-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/347aabf36a2b/molecules-28-00838-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/f0586a560188/molecules-28-00838-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/d5c0515c49fe/molecules-28-00838-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/bf8b7630a362/molecules-28-00838-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/0db27b4ecdb8/molecules-28-00838-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/53c88a708ada/molecules-28-00838-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/b55a9c9594c6/molecules-28-00838-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/9820d741daf4/molecules-28-00838-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/a04fd24b43de/molecules-28-00838-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/099cdfe18b84/molecules-28-00838-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/9e0ec4fa129d/molecules-28-00838-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/960e6fe38b3a/molecules-28-00838-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/cbbd97a6eb56/molecules-28-00838-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/6d8f3477cb8f/molecules-28-00838-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/4008c48cda29/molecules-28-00838-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/86ef59c5228b/molecules-28-00838-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/aa9861605d00/molecules-28-00838-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/517199c4f545/molecules-28-00838-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/0cee1a0cba78/molecules-28-00838-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/d36587954582/molecules-28-00838-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/df39c14e2af3/molecules-28-00838-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/c1de7f92d7d1/molecules-28-00838-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/74c7fcb1e289/molecules-28-00838-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/dbe10774dd38/molecules-28-00838-g033.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/0c7650f63d4b/molecules-28-00838-g034.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/5060b0677fe0/molecules-28-00838-g035.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/12b45af11246/molecules-28-00838-g036.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/8daa3200e8f5/molecules-28-00838-g037.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/7903a1bc0d67/molecules-28-00838-g038.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/4a0d11d852d4/molecules-28-00838-g039.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/6897462a882c/molecules-28-00838-g040.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/07c4687a1f64/molecules-28-00838-g041.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f94/9865940/2dfbc76eef3b/molecules-28-00838-g043.jpg

相似文献

[1]
Imidazole: Synthesis, Functionalization and Physicochemical Properties of a Privileged Structure in Medicinal Chemistry.

Molecules. 2023-1-13

[2]
Naturally occurring and synthetic imidazoles: their chemistry and their biological activities.

Curr Med Chem. 2006

[3]
Current and Future Prospective of a Versatile Moiety: Imidazole.

Curr Drug Targets. 2020

[4]
Imidazole: An Emerging Scaffold Showing its Therapeutic Voyage to Develop Valuable Molecular Entities.

Curr Drug Res Rev. 2020

[5]
Biological Significance of Imidazole-based Analogues in New Drug Development.

Curr Drug Discov Technol. 2020

[6]
Comprehensive review in current developments of imidazole-based medicinal chemistry.

Med Res Rev. 2013-6-5

[7]
Imidazole Derivatives as Potential Therapeutic Agents.

Curr Pharm Des. 2016

[8]
Synthesis and initial biological evaluation of substituted 1-phenylamino-2-thio-4,5-dimethyl-1H-imidazole derivatives.

Bioorg Med Chem Lett. 2013-10-22

[9]
Imidazoles as promising scaffolds for antibacterial activity: a review.

Mini Rev Med Chem. 2013-10

[10]
Friedlӓnder's synthesis of quinolines as a pivotal step in the development of bioactive heterocyclic derivatives in the current era of medicinal chemistry.

Chem Biol Drug Des. 2022-12

引用本文的文献

[1]
Unlocking azole chemical space via modular and regioselective N-alkylation.

Nat Chem. 2025-8-26

[2]
Late-stage labeling of diverse peptides and proteins with iodine-125.

J Pharm Anal. 2025-7

[3]
Quantum chemical modeling, molecular docking, and ADMET evaluation of imidazole phenothiazine hybrids.

Sci Rep. 2025-7-2

[4]
Imidazole Hybrids: A Privileged Class of Heterocycles in Medicinal Chemistry with New Insights into Anticancer Activity.

Molecules. 2025-5-21

[5]
Design, synthesis, anticancer properties, and molecular docking of imidazolone derivatives with lipophilic moiety.

Sci Rep. 2025-5-27

[6]
Green synthesis of imidazole derivatives in a ternary deep eutectic solvent system.

Sci Rep. 2025-5-14

[7]
Green synthesis, characterization, in silico molecular docking and biological evaluation of imidazolylchalcones as promising fungicide/s and nematicide/s.

BMC Chem. 2025-4-29

[8]
Synthesis and effect of 4-acetylphenylamine-based imidazole derivatives on migration and growth of 3D cultures of breast, prostate and brain cancer cells.

Sci Rep. 2024-11-14

[9]
Medicinal polypharmacology-a scientific glossary of terminology and concepts.

Front Pharmacol. 2024-7-18

[10]
Development of a Fluorescent Assay and Imidazole-Containing Inhibitors by Targeting SARS-CoV-2 Nsp13 Helicase.

Molecules. 2024-5-14

本文引用的文献

[1]
FeO/SOH@zeolite-Y as a novel multi-functional and magnetic nanocatalyst for clean and soft synthesis of imidazole and perimidine derivatives.

RSC Adv. 2019-6-20

[2]
Metopimazine is primarily metabolized by a liver amidase in humans.

Pharmacol Res Perspect. 2022-2

[3]
Design, synthesis, biological evaluation, and docking studies of novel (imidazol-5-yl)pyrimidine-based derivatives as dual BRAF/p38α inhibitors.

Eur J Med Chem. 2021-4-5

[4]
Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper.

J Am Chem Soc. 2020-9-2

[5]
Imidazole derivatives as antiparasitic agents and use of molecular modeling to investigate the structure-activity relationship.

Parasitol Res. 2020-4-11

[6]
Structural Basis for EGFR Mutant Inhibition by Trisubstituted Imidazole Inhibitors.

J Med Chem. 2020-4-14

[7]
Photoprotective Activity of Topsentin, A Bis(Indole) Alkaloid from the Marine Sponge Spongosorites genitrix, by Regulation of COX-2 and Mir-4485 Expression in UVB-Irradiated Human Keratinocyte Cells.

Mar Drugs. 2020-1-29

[8]
Imidazole-Imidazole Hydrogen Bonding in the pH-Sensing Histidine Side Chains of Influenza A M2.

J Am Chem Soc. 2020-2-12

[9]
Active centre and reactivity descriptor of a green single component imidazole catalyst for acetylene hydrochlorination.

Phys Chem Chem Phys. 2020-1-22

[10]
Modular Synthesis of Di- and Trisubstituted Imidazoles from Ketones and Aldehydes: A Route to Kinase Inhibitors.

J Org Chem. 2019-9-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索