Rothenhäusler Florian, Ruckdaeschel Holger
Department of Polymer Engineering, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
Neue Materialien Bayreuth GmbH, Gottlieb-Keim-Straße 60, 95448 Bayreuth, Germany.
Polymers (Basel). 2023 Jan 11;15(2):385. doi: 10.3390/polym15020385.
Bio-based alternatives for petroleum-based thermosets are crucial for implementing sustainable practices in fiber-reinforced polymer composites. Therefore, the mechanical properties of diglycidyl ether of bisphenol a (DGEBA) cured with either l-arginine, l-citrulline, γ-aminobutyric acid, l-glutamine, l-tryptophan, or l-tyrosine were investigated to determine the potential of amino acids as bio-based curing agents for epoxy resins. Depending on the curing agent, the glass transition temperature, Young’s modulus, tensile strength, and critical stress intensity factor range from 98.1 ∘C to 188.3 ∘C, 2.6 GPa to 3.5 GPa, 39.4 MPa to 46.4 MPa, and 0.48 MPam0.5 to 1.34 MPam0.5, respectively. This shows that amino acids as curing agents for epoxy resins result in thermosets with a wide range of thermo-mechanical properties and that the choice of curing agent has significant influence on the thermoset’s properties. After collecting the results of dynamic mechanical analysis (DMA), tensile, flexural, compression, and compact tension tests, the functionality f, cross-link density νC, glass transition temperature Tg, Young’s modulus ET, compression yield strength σCy, critical stress intensity factor in mode I KIC, fracture energy GIC, and diameter of the plastic zone dp are correlated with one another to analyze their inter-dependencies. Here, the cross-link density correlates strongly positively with Tg, ET, and σCy, and strongly negatively with KIC, GIC, and dp. This shows that the cross-link density of DGEBA cured with amino acids has a crucial influence on their thermo-mechanical properties and that the thermosets considered may either be stiff and strong or tough, but hardly both at the same time.
基于生物的石油基热固性替代物对于在纤维增强聚合物复合材料中实施可持续实践至关重要。因此,研究了用L-精氨酸、L-瓜氨酸、γ-氨基丁酸、L-谷氨酰胺、L-色氨酸或L-酪氨酸固化的双酚A二缩水甘油醚(DGEBA)的机械性能,以确定氨基酸作为环氧树脂生物基固化剂的潜力。根据固化剂的不同,玻璃化转变温度、杨氏模量、拉伸强度和临界应力强度因子分别在98.1℃至188.3℃、2.6 GPa至3.5 GPa、39.4 MPa至46.4 MPa以及0.48 MPam0.5至1.34 MPam0.5范围内。这表明氨基酸作为环氧树脂的固化剂会导致热固性材料具有广泛的热机械性能,并且固化剂的选择对热固性材料的性能有重大影响。在收集动态力学分析(DMA)、拉伸、弯曲、压缩和紧凑拉伸试验的结果后,将官能度f、交联密度νC、玻璃化转变温度Tg、杨氏模量ET、压缩屈服强度σCy、I型临界应力强度因子KIC、断裂能GIC和塑性区直径dp相互关联,以分析它们之间的相互依赖性。在此,交联密度与Tg、ET和σCy呈强烈正相关,与KIC、GIC和dp呈强烈负相关。这表明用氨基酸固化的DGEBA的交联密度对其热机械性能有至关重要的影响,并且所考虑的热固性材料要么坚硬且坚固,要么坚韧,但很难同时具备这两种特性。