Department of Systems & Industrial Engineering, The University of Arizona, 1127 James E. Rogers Way, Tucson, Arizona 85719, USA.
Chaos. 2022 Jun;32(6):063107. doi: 10.1063/5.0086649.
This work presents a recently developed approach based on physics-informed neural networks (PINNs) for the solution of initial value problems (IVPs), focusing on stiff chemical kinetic problems with governing equations of stiff ordinary differential equations (ODEs). The framework developed by the authors combines PINNs with the theory of functional connections and extreme learning machines in the so-called extreme theory of functional connections (X-TFC). While regular PINN methodologies appear to fail in solving stiff systems of ODEs easily, we show how our method, with a single-layer neural network (NN) is efficient and robust to solve such challenging problems without using artifacts to reduce the stiffness of problems. The accuracy of X-TFC is tested against several state-of-the-art methods, showing its performance both in terms of computational time and accuracy. A rigorous upper bound on the generalization error of X-TFC frameworks in learning the solutions of IVPs for ODEs is provided here for the first time. A significant advantage of this framework is its flexibility to adapt to various problems with minimal changes in coding. Also, once the NN is trained, it gives us an analytical representation of the solution at any desired instant in time outside the initial discretization. Learning stiff ODEs opens up possibilities of using X-TFC in applications with large time ranges, such as chemical dynamics in energy conversion, nuclear dynamics systems, life sciences, and environmental engineering.
本文提出了一种基于物理信息神经网络(PINNs)的新方法,用于解决初值问题(IVPs),重点是具有刚性常微分方程(ODE)控制方程的刚性化学反应动力学问题。作者提出的框架将 PINNs 与功能连接理论和极端学习机结合在所谓的功能连接极限理论(X-TFC)中。虽然常规的 PINN 方法似乎无法有效地解决刚性 ODE 系统,但我们展示了如何使用单层神经网络(NN)来有效地解决这些具有挑战性的问题,而无需使用人工制品来降低问题的刚度。X-TFC 的准确性通过与几种最先进的方法进行了测试,展示了其在计算时间和准确性方面的性能。本文首次针对 ODE 的 IVP 提供了 X-TFC 框架学习解的泛化误差的严格上限。该框架的一个显著优势是它能够灵活适应各种问题,只需对编码进行最小的更改。此外,一旦训练了神经网络,它就可以在初始离散化之外的任何期望时间点为我们提供解的解析表示。学习刚性 ODE 为在具有大时间范围的应用中使用 X-TFC 开辟了可能性,例如能源转换中的化学动力学、核动力学系统、生命科学和环境工程。