Suppr超能文献

基于运动活动统计特征和遗传算法的驾驶员身份识别。

Driver Identification Using Statistical Features of Motor Activity and Genetic Algorithms.

机构信息

Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.

CONACYT, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico.

出版信息

Sensors (Basel). 2023 Jan 10;23(2):784. doi: 10.3390/s23020784.

Abstract

Driver identification refers to the process whose primary purpose is identifying the person behind the steering wheel using collected information about the driver him/herself. The constant monitoring of drivers through sensors generates great benefits in advanced driver assistance systems (ADAS), to learn more about the behavior of road users. Currently, there are many research works that address the subject in search of creating intelligent models that help to identify vehicle users in an efficient and objective way. However, the different methodologies proposed to create these models are based on data generated from sensors that include different vehicle brands on routes established in real environments, which, although they provide very important information for different purposes, in the case of driver identification, there may be a certain degree of bias due to the different situations in which the route environment may change. The proposed method seeks to intelligently and objectively select the most outstanding statistical features from motor activity generated in the main elements of the vehicle with genetic algorithms for driver identification, this process being newer than those established by the state-of-the-art. The results obtained from the proposal were an accuracy of 90.74% to identify two drivers and 62% for four, using a Random Forest Classifier (RFC). With this, it can be concluded that a comprehensive selection of features can greatly optimize the identification of drivers.

摘要

驾驶员身份识别是指使用收集到的驾驶员本人的信息来识别方向盘后面的人的过程。通过传感器对驾驶员进行持续监控,可以为高级驾驶员辅助系统 (ADAS) 带来很多好处,以更多地了解道路使用者的行为。目前,有许多研究工作针对该主题进行研究,旨在创建智能模型,以帮助以高效和客观的方式识别车辆用户。然而,为创建这些模型而提出的不同方法是基于从传感器生成的数据,这些数据包括在真实环境中建立的路线上的不同车辆品牌,尽管它们为不同目的提供了非常重要的信息,但在驾驶员识别的情况下,由于路线环境可能会发生变化,可能会存在一定程度的偏差。所提出的方法旨在通过遗传算法从车辆主要元件产生的运动活动中智能且客观地选择最突出的统计特征,用于驾驶员识别,这个过程比现有技术的方法更新。该提案的结果是,使用随机森林分类器 (RFC) ,可以分别以 90.74%和 62%的准确率识别两名驾驶员和四名驾驶员。由此可以得出结论,全面选择特征可以极大地优化驾驶员的识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2051/9864934/41f012baa81c/sensors-23-00784-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验