Suppr超能文献

使用低成本传感器和遗传算法进行车载酒精检测以辅助酒驾检测

In-Vehicle Alcohol Detection Using Low-Cost Sensors and Genetic Algorithms to Aid in the Drinking and Driving Detection.

作者信息

Celaya-Padilla Jose M, Romero-González Jonathan S, Galvan-Tejada Carlos E, Galvan-Tejada Jorge I, Luna-García Huizilopoztli, Arceo-Olague Jose G, Gamboa-Rosales Nadia K, Sifuentes-Gallardo Claudia, Martinez-Torteya Antonio, De la Rosa José I, Gamboa-Rosales Hamurabi

机构信息

Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas 98000, Mexico.

Cátedras-CONACyT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico.

出版信息

Sensors (Basel). 2021 Nov 21;21(22):7752. doi: 10.3390/s21227752.

Abstract

Worldwide, motor vehicle accidents are one of the leading causes of death, with alcohol-related accidents playing a significant role, particularly in child death. Aiming to aid in the prevention of this type of accidents, a novel non-invasive method capable of detecting the presence of alcohol inside a motor vehicle is presented. The proposed methodology uses a series of low-cost alcohol MQ3 sensors located inside the vehicle, whose signals are stored, standardized, time-adjusted, and transformed into 5 s window samples. Statistical features are extracted from each sample and a feature selection strategy is carried out using a genetic algorithm, and a forward selection and backwards elimination methodology. The four features derived from this process were used to construct an SVM classification model that detects presence of alcohol. The experiments yielded 7200 samples, 80% of which were used to train the model. The rest were used to evaluate the performance of the model, which obtained an area under the ROC curve of 0.98 and a sensitivity of 0.979. These results suggest that the proposed methodology can be used to detect the presence of alcohol and enforce prevention actions.

摘要

在全球范围内,机动车事故是主要死因之一,与酒精相关的事故起着重要作用,尤其是在儿童死亡案例中。为了有助于预防此类事故,本文提出了一种能够检测机动车内酒精存在情况的新型非侵入性方法。所提出的方法使用了一系列位于车内的低成本酒精MQ3传感器,其信号被存储、标准化、时间调整并转换为5秒窗口样本。从每个样本中提取统计特征,并使用遗传算法以及前向选择和后向消除方法执行特征选择策略。从这个过程中得出的四个特征被用于构建一个检测酒精存在的支持向量机分类模型。实验产生了7200个样本,其中80%用于训练模型。其余样本用于评估模型性能,该模型的ROC曲线下面积为0.98,灵敏度为0.979。这些结果表明,所提出的方法可用于检测酒精的存在并实施预防措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b5e/8625476/9b65a0359871/sensors-21-07752-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验