Suppr超能文献

基于雷达的少量样本用户自适应呼吸信号感知。

Few-Shot User-Adaptable Radar-Based Breath Signal Sensing.

机构信息

Infineon Technologies AG, Am Campeon 1-15, 85579 Neubiberg, Germany.

Department of Electronic and Computer Technology, University of Granada, Avenida de Fuente Nueva s/n, 18071 Granada, Spain.

出版信息

Sensors (Basel). 2023 Jan 10;23(2):804. doi: 10.3390/s23020804.

Abstract

Vital signs estimation provides valuable information about an individual's overall health status. Gathering such information usually requires wearable devices or privacy-invasive settings. In this work, we propose a radar-based user-adaptable solution for respiratory signal prediction while sitting at an office desk. Such an approach leads to a contact-free, privacy-friendly, and easily adaptable system with little reference training data. Data from 24 subjects are preprocessed to extract respiration information using a 60 GHz frequency-modulated continuous wave radar. With few training examples, episodic optimization-based learning allows for generalization to new individuals. Episodically, a convolutional variational autoencoder learns how to map the processed radar data to a reference signal, generating a constrained latent space to the central respiration frequency. Moreover, autocorrelation over recorded radar data time assesses the information corruption due to subject motions. The model learning procedure and breathing prediction are adjusted by exploiting the motion corruption level. Thanks to the episodic acquired knowledge, the model requires an adaptation time of less than one and two seconds for one to five training examples, respectively. The suggested approach represents a novel, quickly adaptable, non-contact alternative for office settings with little user motion.

摘要

生命体征估计提供了关于个体整体健康状况的有价值的信息。收集此类信息通常需要可穿戴设备或侵犯隐私的设置。在这项工作中,我们提出了一种基于雷达的用户自适应解决方案,用于在办公桌上坐立时预测呼吸信号。这种方法可实现无接触、对隐私友好且易于适应的系统,只需很少的参考训练数据。使用 60GHz 频率调制连续波雷达从 24 个对象的数据中提取呼吸信息。通过使用少量训练示例,基于阶段性优化的学习允许推广到新个体。阶段性地,卷积变分自编码器学习如何将处理后的雷达数据映射到参考信号,生成约束的潜在空间到中心呼吸频率。此外,通过记录的雷达数据时间的自相关来评估由于主体运动而导致的信息损坏。通过利用运动损坏水平来调整模型学习过程和呼吸预测。由于阶段性获取的知识,该模型在一到五个训练示例的情况下,分别需要不到一秒和两秒的适应时间。所提出的方法代表了一种新颖的、快速适应的、非接触式替代方案,适用于用户运动较少的办公环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b46/9865656/e6304bd410f0/sensors-23-00804-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验