Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.
Department of Radiology, Harvard Medical School, Boston, Massachusetts.
Magn Reson Med. 2018 Sep;80(3):885-894. doi: 10.1002/mrm.27198. Epub 2018 Apr 6.
Demonstrate a novel fast method for reconstruction of multi-dimensional MR Fingerprinting (MRF) data using Deep Learning methods.
A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the Extended Phase Graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size, and quantified in simulated numerical brain phantom data and ISMRM/NIST phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF FISP sequences with spiral readout. The utility of the method is demonstrated in a healthy subject at 1.5 T.
Network training required 10 to 74 minutes and once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a root-mean-square error (RMSE) of 2.6 ms for T and 1.9 ms for T. The reconstruction error in the presence of noise was less than 10% for both T and T for signal-to-noise greater than 25 dB. Phantom measurements yielded good agreement (R=0.99/0.99 for MRF EPI T/T and 0.94/0.98 for MRF FISP T/T) between the T and T estimated by the NN and reference values from the ISMRM/NIST phantom.
Reconstruction of MRF data with a NN is accurate, 300–5000 fold faster and more robust to noise and undersampling than conventional MRF dictionary matching.
展示一种使用深度学习方法对多维磁共振指纹成像(MRF)数据进行快速重建的新方法。
使用 TensorFlow 框架定义神经网络(NN),并在使用扩展相位图形式主义计算的模拟 MRF 数据上进行训练。NN 对无噪声和噪声数据的重建精度作为训练数据大小的函数与传统的 MRF 模板匹配进行比较,并在模拟数值脑体模数据和在 1.5T 和 3T 扫描仪上测量的 ISMRM/NIST 体模数据中进行量化,这些体模数据使用优化的 MRF EPI 和 MRF FISP 序列以及螺旋读取进行测量。该方法在 1.5T 健康受试者中得到了验证。
网络训练需要 10 到 74 分钟,一旦训练完成,对于 MRF EPI 序列,数据重建大约需要 10 毫秒,对于 MRF FISP 序列,数据重建大约需要 76 毫秒。使用 NN 对模拟的无噪声脑数据进行重建,导致 T 和 T 的均方根误差(RMSE)分别为 2.6 毫秒和 1.9 毫秒。对于信噪比大于 25dB 的情况,T 和 T 的重建误差都小于 10%。体模测量得到了很好的一致性(NN 估计的 T 和 T 与 ISMRM/NIST 体模的参考值之间的 R 值分别为 0.99/0.99 和 0.94/0.98)。
使用 NN 对 MRF 数据进行重建是准确的,比传统的 MRF 字典匹配方法快 300 到 5000 倍,对噪声和欠采样更稳健。