Suppr超能文献

磁共振指纹成像深度重建网络(DRONE)。

MR fingerprinting Deep RecOnstruction NEtwork (DRONE).

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.

Department of Radiology, Harvard Medical School, Boston, Massachusetts.

出版信息

Magn Reson Med. 2018 Sep;80(3):885-894. doi: 10.1002/mrm.27198. Epub 2018 Apr 6.

Abstract

PURPOSE

Demonstrate a novel fast method for reconstruction of multi-dimensional MR Fingerprinting (MRF) data using Deep Learning methods.

METHODS

A neural network (NN) is defined using the TensorFlow framework and trained on simulated MRF data computed with the Extended Phase Graph formalism. The NN reconstruction accuracy for noiseless and noisy data is compared to conventional MRF template matching as a function of training data size, and quantified in simulated numerical brain phantom data and ISMRM/NIST phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and MRF FISP sequences with spiral readout. The utility of the method is demonstrated in a healthy subject at 1.5 T.

RESULTS

Network training required 10 to 74 minutes and once trained, data reconstruction required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. Reconstruction of simulated, noiseless brain data using the NN resulted in a root-mean-square error (RMSE) of 2.6 ms for T and 1.9 ms for T. The reconstruction error in the presence of noise was less than 10% for both T and T for signal-to-noise greater than 25 dB. Phantom measurements yielded good agreement (R=0.99/0.99 for MRF EPI T/T and 0.94/0.98 for MRF FISP T/T) between the T and T estimated by the NN and reference values from the ISMRM/NIST phantom.

CONCLUSION

Reconstruction of MRF data with a NN is accurate, 300–5000 fold faster and more robust to noise and undersampling than conventional MRF dictionary matching.

摘要

目的

展示一种使用深度学习方法对多维磁共振指纹成像(MRF)数据进行快速重建的新方法。

方法

使用 TensorFlow 框架定义神经网络(NN),并在使用扩展相位图形式主义计算的模拟 MRF 数据上进行训练。NN 对无噪声和噪声数据的重建精度作为训练数据大小的函数与传统的 MRF 模板匹配进行比较,并在模拟数值脑体模数据和在 1.5T 和 3T 扫描仪上测量的 ISMRM/NIST 体模数据中进行量化,这些体模数据使用优化的 MRF EPI 和 MRF FISP 序列以及螺旋读取进行测量。该方法在 1.5T 健康受试者中得到了验证。

结果

网络训练需要 10 到 74 分钟,一旦训练完成,对于 MRF EPI 序列,数据重建大约需要 10 毫秒,对于 MRF FISP 序列,数据重建大约需要 76 毫秒。使用 NN 对模拟的无噪声脑数据进行重建,导致 T 和 T 的均方根误差(RMSE)分别为 2.6 毫秒和 1.9 毫秒。对于信噪比大于 25dB 的情况,T 和 T 的重建误差都小于 10%。体模测量得到了很好的一致性(NN 估计的 T 和 T 与 ISMRM/NIST 体模的参考值之间的 R 值分别为 0.99/0.99 和 0.94/0.98)。

结论

使用 NN 对 MRF 数据进行重建是准确的,比传统的 MRF 字典匹配方法快 300 到 5000 倍,对噪声和欠采样更稳健。

相似文献

1
MR fingerprinting Deep RecOnstruction NEtwork (DRONE).磁共振指纹成像深度重建网络(DRONE)。
Magn Reson Med. 2018 Sep;80(3):885-894. doi: 10.1002/mrm.27198. Epub 2018 Apr 6.
5
Magnetic resonance fingerprinting: a technical review.磁共振指纹成像技术:一项技术综述。
Magn Reson Med. 2019 Jan;81(1):25-46. doi: 10.1002/mrm.27403. Epub 2018 Sep 14.
6
k-Space deep learning for reference-free EPI ghost correction.k 空间深度学习用于无参考 EPI 鬼影校正。
Magn Reson Med. 2019 Dec;82(6):2299-2313. doi: 10.1002/mrm.27896. Epub 2019 Jul 18.

引用本文的文献

2
Contrastive Learning for Accelerated MR Fingerprinting.用于加速磁共振指纹识别的对比学习
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2025 May;33.

本文引用的文献

5
Transverse relaxation of cerebrospinal fluid depends on glucose concentration.脑脊液的横向弛豫取决于葡萄糖浓度。
Magn Reson Imaging. 2017 Dec;44:72-81. doi: 10.1016/j.mri.2017.08.001. Epub 2017 Aug 3.
6
Algorithm comparison for schedule optimization in MR fingerprinting.磁共振指纹成像中用于序列优化的算法比较
Magn Reson Imaging. 2017 Sep;41:15-21. doi: 10.1016/j.mri.2017.02.010. Epub 2017 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验