Suppr超能文献

相似文献

1
T cell exhaustion in malignant gliomas.
Trends Cancer. 2023 Apr;9(4):270-292. doi: 10.1016/j.trecan.2022.12.008. Epub 2023 Jan 19.
2
Advances in Immune Microenvironment and Immunotherapy of Isocitrate Dehydrogenase Mutated Glioma.
Front Immunol. 2022 Jun 13;13:914618. doi: 10.3389/fimmu.2022.914618. eCollection 2022.
3
Deciphering diffuse glioma immune microenvironment as a key to improving immunotherapy results.
Curr Opin Oncol. 2022 Nov 1;34(6):653-660. doi: 10.1097/CCO.0000000000000895. Epub 2022 Aug 24.
4
5
T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment.
J Neurooncol. 2020 Apr;147(2):281-295. doi: 10.1007/s11060-020-03450-7. Epub 2020 Mar 17.
6
Molecular insight into T cell exhaustion in hepatocellular carcinoma.
Pharmacol Res. 2024 May;203:107161. doi: 10.1016/j.phrs.2024.107161. Epub 2024 Mar 29.
7
Immunotherapeutic approaches for glioma.
Crit Rev Immunol. 2009;29(1):1-42. doi: 10.1615/critrevimmunol.v29.i1.10.
8
The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies.
Int Rev Immunol. 2024;43(6):419-440. doi: 10.1080/08830185.2024.2401352. Epub 2024 Sep 11.
9
Potential of IDH mutations as immunotherapeutic targets in gliomas: a review and meta-analysis.
Expert Opin Ther Targets. 2021 Dec;25(12):1045-1060. doi: 10.1080/14728222.2021.2017422.
10
Complex neural-immune interactions shape glioma immunotherapy.
Immunity. 2025 May 13;58(5):1140-1160. doi: 10.1016/j.immuni.2025.04.017. Epub 2025 May 4.

引用本文的文献

5
Mathematical model of tumor-macrophage dynamics in glioma to advance myeloid-targeted therapies.
bioRxiv. 2025 Jul 18:2025.07.14.664717. doi: 10.1101/2025.07.14.664717.
6
Exploring the Role of Immune Cells in Glioma: Causal Associations and Clinical Implications.
Int J Med Sci. 2025 Jun 12;22(12):2973-2991. doi: 10.7150/ijms.116560. eCollection 2025.
7
BST2 and DIRAS3 Drive Immune Evasion and Tumor Progression in High-Grade Glioma.
Int J Mol Sci. 2025 Jun 27;26(13):6205. doi: 10.3390/ijms26136205.
8
Applications of CRISPR-Cas9 in mitigating cellular senescence and age-related disease progression.
Clin Exp Med. 2025 Jul 8;25(1):237. doi: 10.1007/s10238-025-01771-3.

本文引用的文献

1
Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities.
Cancer Commun (Lond). 2022 Nov;42(11):1049-1082. doi: 10.1002/cac2.12374. Epub 2022 Oct 20.
2
Oncometabolite d-2HG alters T cell metabolism to impair CD8 T cell function.
Science. 2022 Sep 30;377(6614):1519-1529. doi: 10.1126/science.abj5104. Epub 2022 Sep 29.
3
PD-1 combination therapy with IL-2 modifies CD8 T cell exhaustion program.
Nature. 2022 Oct;610(7930):173-181. doi: 10.1038/s41586-022-05257-0. Epub 2022 Sep 28.
4
Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence.
Cancer Cell. 2022 Jul 11;40(7):768-786.e7. doi: 10.1016/j.ccell.2022.06.001. Epub 2022 Jun 23.
5
The paradox of radiation and T cells in tumors.
Neoplasia. 2022 Sep;31:100808. doi: 10.1016/j.neo.2022.100808. Epub 2022 Jun 9.
6
Immune landscape of a genetically engineered murine model of glioma compared with human glioma.
JCI Insight. 2022 Jun 22;7(12):e148990. doi: 10.1172/jci.insight.148990.
7
Epigenetic regulation of T cell exhaustion.
Nat Immunol. 2022 Jun;23(6):848-860. doi: 10.1038/s41590-022-01224-z. Epub 2022 May 27.
8
Spatiotemporal co-dependency between macrophages and exhausted CD8 T cells in cancer.
Cancer Cell. 2022 Jun 13;40(6):624-638.e9. doi: 10.1016/j.ccell.2022.05.004. Epub 2022 May 26.
9
Exhaustion of CAR T cells: potential causes and solutions.
J Transl Med. 2022 May 23;20(1):239. doi: 10.1186/s12967-022-03442-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验