Suppr超能文献

通过整合体外和计算机模拟实验,预测和阐明 3D 打印癌细胞在水凝胶结构中的打印后行为。

Predicting and elucidating the post-printing behavior of 3D printed cancer cells in hydrogel structures by integrating in-vitro and in-silico experiments.

机构信息

Department of Applied Mathematics, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada.

Department of Mathematics, Faculty of Science and Engineering, Swansea University, Swansea, UK.

出版信息

Sci Rep. 2023 Jan 21;13(1):1211. doi: 10.1038/s41598-023-28286-9.

Abstract

A key feature distinguishing 3D bioprinting from other 3D cell culture techniques is its precise control over created structures. This property allows for the high-resolution fabrication of biomimetic structures with controlled structural and mechanical properties such as porosity, permeability, and stiffness. However, analyzing post-printing cellular dynamics and optimizing their functions within the 3D fabricated environment is only possible through trial and error and replicating several experiments. This issue motivated the development of a cellular automata model for the first time to simulate post-printing cell behaviour within the 3D bioprinted construct. To improve our model, we bioprinted a 3D construct using MDA-MB-231 cell-laden hydrogel and evaluated cellular functions, including viability and proliferation in 11 days. The results showed that our model successfully simulated the 3D bioprinted structure and captured in-vitro observations. We demonstrated that in-silico model could predict and elucidate post-printing biological functions for different initial cell numbers in bioink and different bioink formulations with gelatine and alginate, without replicating several costly and time-consuming in-vitro measurements. We believe such a computational framework will substantially impact 3D bioprinting's future application. We hope this study inspires researchers to further realize how an in-silico model might be utilized to advance in-vitro 3D bioprinting research.

摘要

将 3D 生物打印与其他 3D 细胞培养技术区分开来的一个关键特征是其对所创建结构的精确控制。该特性允许制造具有受控结构和机械性能(如孔隙率、渗透性和刚性)的仿生结构的高分辨率制造。然而,只有通过反复试验和复制多个实验,才能分析打印后的细胞动力学并优化其在 3D 制造环境中的功能。这个问题促使我们首次开发了一个细胞自动机模型来模拟 3D 生物打印结构内打印后的细胞行为。为了改进我们的模型,我们使用 MDA-MB-231 细胞负载水凝胶打印了一个 3D 结构,并在 11 天内评估了细胞功能,包括活力和增殖。结果表明,我们的模型成功地模拟了 3D 生物打印结构并捕获了体外观察结果。我们证明,在没有复制多个昂贵且耗时的体外测量的情况下,我们的计算模型可以预测和阐明生物墨水初始细胞数量不同和含有明胶和藻酸盐的不同生物墨水配方的打印后生物功能。我们相信这样的计算框架将对 3D 生物打印的未来应用产生重大影响。我们希望这项研究能启发研究人员进一步认识到计算模型如何用于推进体外 3D 生物打印研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc0/9867702/c58810f6a144/41598_2023_28286_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验