AboArab Mohammed A, Potsika Vassiliki T, Pleouras Dimitrios S, Fotiadis Dimitrios I
Unit of Medical Technology and Intelligent Information Systems, Dept. of Materials Science and Engineering, University of Ioannina, Ioannina GR45110, Greece.
Electronics and Electrical Communication Engineering Dept., Faculty of Engineering, Tanta University, Tanta, Egypt.
Comput Struct Biotechnol J. 2025 Aug 7;27:3640-3653. doi: 10.1016/j.csbj.2025.08.005. eCollection 2025.
Drug-eluting balloons (DEBs) represent a promising alternative to stent-based interventions for peripheral artery disease (PAD), and their therapeutic efficacy is dependent on optimizing drug transfer, mechanical deployment, and vessel-wall interactions. This review synthesizes current advancements in computational modeling; systematically analyzes studies identified through comprehensive ScienceDirect, Scopus, and PubMed (2015-2025) searches; and selects them according to PRISMA guidelines. Key strategies, including computational fluid dynamics (CFD), finite element analysis (FEA), fluid-structure interaction (FSI), and machine learning (ML), are critically examined to elucidate how drug kinetics, coating stability, and mechanical stress govern therapeutic outcomes. CFD-based mass transfer models capture flow-driven drug dispersion and washout dynamics, whereas FEA links balloon mechanics, plaque morphology, and drug penetration efficiency. FSI frameworks provide insight into the coupled effects of wall deformation and hemodynamics, identifying high-risk regions of drug underdelivery. ML-driven surrogates and physics-informed neural networks (PINNs) enable real-time, patient-specific predictions with computational accelerations exceeding 600 × while maintaining less than 2 % deviation from high-fidelity solvers. Persistent challenges include anatomical simplifications, limited validation, and insufficient integration of biological remodeling. Future directions emphasize hybrid pipelines integrating imaging-derived 3D geometries, multiscale simulations, and AI-driven pharmacokinetic modeling to establish clinically translatable digital twins for precision-guided DEB therapies in PAD.
药物洗脱球囊(DEB)是外周动脉疾病(PAD)基于支架干预的一种有前景的替代方案,其治疗效果取决于优化药物传递、机械展开和血管壁相互作用。本综述综合了计算建模的当前进展;系统分析了通过全面搜索ScienceDirect、Scopus和PubMed(2015 - 2025年)确定的研究;并根据PRISMA指南进行筛选。对包括计算流体动力学(CFD)、有限元分析(FEA)、流固耦合(FSI)和机器学习(ML)在内的关键策略进行了严格审查,以阐明药物动力学、涂层稳定性和机械应力如何控制治疗结果。基于CFD的传质模型捕捉流动驱动的药物扩散和洗脱动力学,而FEA将球囊力学、斑块形态和药物渗透效率联系起来。FSI框架提供了对壁变形和血流动力学耦合效应的见解,识别药物递送不足的高风险区域。ML驱动的替代模型和物理信息神经网络(PINN)能够进行实时、针对患者的预测,计算加速超过600倍,同时与高保真求解器的偏差保持在2%以内。持续存在的挑战包括解剖结构简化、验证有限以及生物重塑整合不足。未来的方向强调整合成像衍生的3D几何形状、多尺度模拟和人工智能驱动的药代动力学建模的混合管道,以建立用于PAD中精确引导DEB治疗的临床可转化数字双胞胎。