Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A1, Canada.
Sunnybrook Research Institute, Toronto, Ontario, M4N 3M5, Canada.
Adv Healthc Mater. 2023 May;12(12):e2202632. doi: 10.1002/adhm.202202632. Epub 2023 Feb 3.
Minimally invasive endovascular embolization is used to treat a wide range of diseases in neurology, oncology, and trauma where the vascular morphologies and corresponding hemodynamics vary greatly. Current techniques based on metallic coils, flow diverters, liquid embolics, and suspended microspheres are limited in their ability to address a wide variety of vasculature and can be plagued by complications including distal migration, compaction, and inappropriate vascular remodeling. Further, these endovascular devices currently offer limited therapeutic functions beyond flow control such as drug delivery. Herein, a novel in situ microcatheter-based photomodulated extrusion approach capable of dynamically tuning the physical and morphological properties of injectable hydrogels, optimizing for local hemodynamic environment and vascular morphology, is proposed and demonstrated. A shear thinning and photoactivated poly(ethylene glycol diacrylate)-nanosilicate (PEGDA-nSi) hydrogel is used to demonstrate multiple extrusion modes which are controlled by photokinetics and device configurations. Real-time photomodulation of injected hydrogel viscosity and modulus is successfully used for embolization in various vasculatures, including high-flow large vessels and arterial-to-arterial capillary shunts. Furthermore, a generalizable therapeutic delivery platform is proposed by demonstrating a core-shell structured extrusion encapsulating doxorubicin to achieve a more sustained release compared to unencapsulated payload.
微创血管内栓塞术用于治疗神经科、肿瘤科和创伤科的多种疾病,这些疾病的血管形态和相应的血流动力学差异很大。目前基于金属线圈、血流导向装置、液体栓塞剂和悬浮微球的技术在处理各种血管方面的能力有限,并且可能会出现并发症,包括远端迁移、压实和不适当的血管重塑。此外,这些血管内装置目前除了流量控制之外,提供的治疗功能非常有限,例如药物输送。在此,提出并证明了一种基于新型原位微导管的光调制挤出方法,该方法能够动态调节可注射水凝胶的物理和形态特性,优化局部血流动力学环境和血管形态。使用剪切变稀和光激活的聚乙二醇二丙烯酸酯-纳米硅酸盐(PEGDA-nSi)水凝胶来演示多种挤出模式,这些模式受光动力学和设备配置控制。成功地将注射水凝胶的粘度和模量实时光调制用于各种血管的栓塞,包括高流量大血管和动脉到动脉毛细血管分流。此外,通过证明具有核壳结构的挤出包封阿霉素的方法,提出了一种可推广的治疗药物输送平台,与未包封的有效载荷相比,实现了更持续的释放。
Adv Healthc Mater. 2023-5
J Biomed Mater Res B Appl Biomater. 2022-8
Biomacromolecules. 2022-6-13
Prog Biomed Eng (Bristol). 2020-1
Nat Rev Drug Discov. 2021-2
Int J Biol Macromol. 2020-12-1
Adv Sci (Weinh). 2019-4-15